YaST2 Documentation

SUSE Linux AG

YaST2 Team, SUSE Linux AG

YaST2 Documentation:
SUSE Linux AG

by YaST2 Team

Copyright © 2004 SUSE Linux AG

This document is not to be construed as a promise by any participating company to develop, deliver, or market a feature or a
product.

SUSE LINUX AG makes no representations or warranties with respect to the contents of this document, and specificaly dis-
claims any express or implied warranties of merchantability or fitness or any particular purpose. Further, SUSE LINUX AG
reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Y ou are alowed to distribute unchanged copies of this document.

Table of Contents

PrEFBCE ... e XXV
L WHhE'SINSIAE eeeviiiii e XXV
2. SEYIE CONVENLIONS ...eeieie ettt ettt et e et e eeeaens XXVi

O g1 0o [1o o P 1

2.YAST - TheBig PICIUIE ...t 3
2.1 OVEIVIBIW Lottt ettt e 3

2.1.1. AcCESS TO ThE SYSIEM . cvveci e 3
2.1.2. Reasonable SUGQESLIONSuiviviieiiieiii e e e e e e 3
2.1.3. WOTKFIOWS .ot e e e e 4
2.1.4. Modules And The YCP-LanQUAagEccvevvneeiiiieeieiieeeeeiie e 4
2.1.5. USer INtEIfate ..ooeeneieei i 4
2.0.6. SUMIMANY ettt ettt ettt e e et e e e e e e eaaees 5
2.2.Y8ST AIChITECIUIE ...t 5
2.2.1. The SCR (System Configuration REPOSItOry)cccovevviveviniiiiiieeninnns 6
2.2.2. The Ul (User INErfate)veeieiiieeeei e 7
22.3.YAST COrEENGINE ...t 8
2.2.4, EXTErNal PrOQramSccoevineeiiiiiee ettt 8

3. The YaST Language - YCP ...ttt 11

3.1 The First YCP PrOgramciuueiiiieeiiieeeieeee e e e e e e e e e e et e e et e eeanaeees 11
1L YCP SOUICE ...ttt ettt 11

3.1.2. The YCP COMPIIES ..o 13

B L3 RUNNING YCP ..ot e 13

3.2 YCP DA TYPES ..oevuieetiieitiie ittt ettt e e e e 13
3.2.1. Data Type Void (Nil)ooeenee e 14
3.2.2. DAaType SYMBOL ...covuiiii e 14
3.2.3. DataTypebooleancoeeviiiiii e 14
3.2.4. DA TYPEINIEOEN ...unieiiiiii ettt 14
3.25. DAaTYPETIOBL ...cevniiiiiii e 14
3.2.6. DAATYPE SIIING . eevviieieii et 14
3.2.7. Data Type byteblockccouniiiiiii 15
3.2.8. DAATYPE LISt .oeeeeiiii e 15
e R BT - W Y/ o 1= 0'= | o 16
3.2.10. DAta TYPE PALN ...eveieeiii e 16
3210 DAB TYPE I oot et 17
3.2.12. DABTYPE ANY oevneietiietieeie ettt 17

3.3 . MOrE Y CP YPES .t 17
3.3.1. DataTypeblocKccoviiiiiiii e 18

3. YCP TYPE SYSIEM oot e e e e e 18
3.4.1. Data Type any And Type ChecKingc..oevvveiiiiiiiiiiineeeiiieeeciiee 18

3.5. YCP EXPression EVAIUSLIONcceuuuuiiiiiiiieeiiiie e 19
3.5.1. Evaluation Of BIOCKSuviiuiiiiiiieiie e 19
3.5.2. Evaluation Of BaSiC Data TYPEScvvuniiiiiieieeiieeeie e 19

3.6, YCP OPEIEIOIS .uiviiiiiiiiiiiieiee ettt e e e e e e e e e e e e aees 20
3.6.1. CompPariSON OPErAtOrSeevuieeiiieeiieeii e eete e e e e e e e e e e eaa e eanas 20
3.6.2. BOOIEEN OPEIELONS ... eeevuieeeeiiiie et et ettt e e 21
3.6.3. Bit OPEIELOISceeveiieieiii e ettt ettt 21
3.6.4. Math OPEratorscceeuuiiiieiii et 22
3.6.5. TriPIE OPEIAOrneeiieet e 22
3.6.6. Operators PreCEAENCEuivviiiiii e 22
3.6.7. The bracket OpEratorocvuiiiii e 23
G300 I g 11 oo 1 ' o 23

3.6.7.2. ACCESSVANANT ..uieiiiiii e e e 23

3.6.7.2.1. ACCESSING lIStS ...oieiiiiiieiiii e 23

3.6.7.2.2. ACCESSING MEPS .. cvuneeeteeeineeet ettt e et e e et e et eeaneeeens 24

3.6.7.2.3. Mixed map/list 8CCESSueevvnieiiiieiiiieeie e, 24

3.6.7.3. ASSIGN VANTANT ..uuieiiieiii e e e e e 24

7. DABTYPEIOCAIE ... 25

Y aST2 Documentation

3.8. YCP Program SHUCIUIEcceuuiieiiiiriie ettt eae e 25
381 COMIMENTS ...eveiiiieee e e 25
3.8.2. Variahle DeClarationcouveiemmiiiiiieeeeeieiiie et 26
3.8.3. Variabl€ ASSIgNMENTceveiiii e 26
3.8.4. Conditional Branchccooviiiiiiiiiiiii e 27
3.8.5. WHITE() LOOP ...ttt ettt e 27
3.8.6. dO.WHIlE() LOOP ...eveeeiieieeeet et 27
3.8.7. repeat..until() LOOPuoieeieiiieiie e 28
3.8.8. break Statementcuvvveiiiie e 28
3.8.9. CONLINUE SEALEMENLvvveiiiie et 29
3.8.20. return SALEMENToeeie e e 29
3.8.11. Function definitionccuiiiiiiiiii e 30
3.8.12. FUNCLiON deClarationcooiuuieiiiieiii e 30
3.8.13. INCIUAE SEBEMENTeeeviieeeeei e 30
3.8.14. imMPOrt SEAEEMENT ...oovniii e 31
3.8.15. Variable Scopes and blOCKSocvveiiiiiiiii e 31
3.8.16. Applying Expressions TO LIStSANA Mapscovvvviviieiiiiinneniiinnnen, 31

3.8.16.1. foreach() StAEmMENtccovuuiiiiiiiiee e 31

3.8.16.2. listmap() SLALEMENLveeeeiieeeeiie e 32

3.8.16.3. maplist() StaemMeNtc..viieiiiiii e 32

3.8.16.4. mapmap() StAEMENTccuveiviieiiiieeei e 33

3.9. Controlling The User INterfaceoovvuviiiiiiiii e 33

3.10. The YAST WIZAIdccouiiiiii i e e e e e e e ees 33

4. RuNNing y2base San-ALONEuuiiiiiiieec e 35
5. SCR DELAIS .ttt 37

T S O Y o 1= 0| TS 37

S O B I 1= = S 37

5.3. ACCESSING SCRiiiiieii ettt e e e e 38

5.4.Using SCR From Within YCPcooiiiiiiiiii e 39

5.5. Using SCR From The Command LiNeccooeiuiiiiiiiiinieiiii e 40

5.6. USEfUl SCRAGENES ...ttt e 40

B. YAST MOUUIES ...ttt et e e 43

6.1. YCP MOUUIES OVEIVIEW ...ttt 43

6.2. TIUEYCP MOUUIES ...ttt 43
6.2.1. INClUded MOTUIESuoiiiieee e 43
6.2.2. True Modules (Imported Modules)oveviiiiiiiiiiiiieci e, 44
6.2.3. True Modules ANd CONSLIUCIONSc.uuveeniiiieeii e 45

6.3. SOMERUIESoeiiiii e 46
B.3. 1. USADIHILY oeeeeiiiieiiiie e 46

6.4. MOAUIE LAYOULcvueeiiieiii e e e e e e e e e e e et e e et e eanaeees 46
6.4.1. MOAUIE SKEIELONcevniieii e e e e e 46
6.4.2. MOdUIE EXAMPIE ...eiiiiiiee e 46

7.YaST2 Ul Layout anNd EVENESc.cuuiiiiiiieeiii ettt 47

A T S I R Y | S 47
7.1.1. Summary: What's ThisAIl ADOUL?coooviiiiiiii e, 47
7.1.2.BaSiCS AN TEIMIS ..ovveeiiiiiei e ee et e e 47

750 5 T 121~ X 47
T 0122 WILGELS ..o 47
7.1.2.3. Ul Independence and the libyuiccooveiiiiiiiiiiiiii, 47
7124 TRENICESIZE ..oovviiiiiii e 48
7.1.2.5. Initial DIialog SIZESccvveiiieiii e 48
7.1.2.6. Full Screen Dialogs: “opt("defaultsize)cccoeevevivviiveinnnnns 48
7.1.3. Layout Building BIOCKSiiiiiiiiiiiiii e 48
7.1.3.1. Layout Boxes: HBOX and VBOXccccvuieiiiiinieiiiiineeeeiiee, 49
7.1.3.2. Specifying Proportions: HWeight and VWeight 49
7.1.3.3. Rubber Bands: HStretch and VStretchcooveviiiiieninnnnnen. 50
7.1.3.4. Making Common Widgets Stretchable: “opt("hstretch) and
TOPLCVSITEICN) e 50
7.1.3.5. Spacings: HSpacing and VSPacingcovevevvnveiiiiineeeeiinnnnn. 51
7.1.3.6. Alignments: Left, Right, HCenter, Top, Bottom, VCenter, HV Cen-
[S U 51
7.1.3.7. Compressing Excess Space: HSquash, V Squash, HV Squash 51

7.1.3.8. Optical Grouping: Framecoooeiiiiiieiiii e 51

Y aST2 Documentation

7.1.3.9. Grouping RadioButtons; RadioButtonGroupcceevunn... 52
7.1.3.10. The Esoterics: ReplacePointccoovviiiiiiiiiiiiiiiiieeie 52
7.1.3.11. Obsolete: SPlit ...cevvveiiieeeieieiiii e 52
7.1.4. Common Layout TEChNIQUEScccuveviiiiiiiiieiiecc e 53
7.1.4.1. Creating Widgets of Equal SIZecccviviiiiiiiiiiiiineeccie, 53
7.1.4.2. Creating Widgets of Equal Size that don't Grow 53
7.1.4.3. Creating Widgets of Equal Size that don't Grow - with Spacings in
DEIWEEN ..o 54
7.1.4.4. Specifying the Size of Scrollable Widgetsccooevvvveennnne, 54

A5 T o 111 £S =0 To B I o 55
7.1.5.1. Debugging Aids: The Log Filecooviiiiiiiiiiiiiciee, 55
7.15.2. Keep it Simple - Do not Overcrowd Dialogs!ccooevevennnee. 55
7.1.5.3. Always Keep Other Uls in Mind - What does it Look Like with
NCUISES? . 56
7.1.5.4. Do not Neglect Mouseless Users - Always Provide Keyboard Short-

CUES! et 56
7.1.6. The Layout Algorithm - How the Layout Engine Works Interndly 56
7.1.6.1. Primary and Secondary Dimensionscccuuurveveiiinneeennnnnnn. 56
7.1.6.2. Calculating the NiCe SIZeviiiiiiieii e 56
7.1.6.2.1. Secondary NiCE SIZecoevniiiiiiiiii i, 56

7.1.6.2.2. Primary NiCE SIZE ...ccvviviieiei e, 57

7.1.6.3. Setting the Size of aLayout - SEtSIze()cvvvvevvveviiiiiiiieeeie, 57
7.1.6.3.1. Running out of Space - the Pathological Cases 57

7.1.6.3.2. Centering in the Secondary Dimensioncc.c...... 58

T2, UL EVENES ottt ettt e e e ea e 58
721 INEFOTUCTION .t 58
7.21.1. The YaST2 Event MOdelccovvviiiiieiiiiiiiiii e 58
7.21.1.1. Classic GUI EVent LOOPSccvvvvvivieiiiieeiieeei e, 58

7.2.1.1.2. The YaST2 APProaChc.ccoveveiuiiieiiiiine e 59

7.2.1.1.3. Simplicity VS. FEAIUIESuuiviiiiiieiiii e 59

7.2.1.1.4. The notify OPtioNoovvvviiieiiiiieeeeii e 60

7.2.1.1.5. Downsides and DiSCUSSIONSccevvuniererninnereninnnnn. 60

7.2.1.1.6. Design AItErNativesceeeviieiiiieiiiiecieeeee e, 61

7212 EVENt DEIVENY .onceiici e 62
7.2.1.2.1. Event Queues vs. One Single Pending Event 62

7.2.1.2.2. Event REiabilitycovvivviiiiiiiiiei e 64

7.2.1.2.3. Defensive Programmingcovevevvinneeeiinneeeiinnnnn. 64

7.2.2. Event-related Ul Builtin FUNCLIONScccvviiviiiiiiiiiiieeceieeeeie 65
7.2.3. EVENt REFEIENCE ...ovviiiiiii e 65
7.23.1L Event Mapsin Generalcccoveviiiieiiiieiiii e 65
7232 EVENE TYPES ..o 66
7.2.3.2.1. WIdgetEVENE ... 66

7.2.3.2.2. Activated WidgetEventccooovviiiiiiiiiii, 67

7.2.3.2.3. ValueChanged WidgetEventcccovvviiiiinnnneennn. 68

7.2.3.2.4. SelectionChanged WidgetEventcoocevevevinnnn. 70

7.2.3.25. MENUEVENE ...ccoviiiiiii e 71

7.2.3.2.6. TIMEOULEVENtc.oviviiiiiii e, 71

7.2.3.2.7. CanCAEVENTiiiiiiiiiei e 71

7.2.3.2.8. KEYEVENT ..o 72

7.2.3.29. DEDUGEVENL ...t 73

8. Installation Frameworks and Installation PrOCESSccovvviiiiiiiiiiiieeeeeeiii e 75
8.1. Product Installation CONLrolcuvveiiieeiiiiieiii e 75
8.L.L FUNCHONEIILYoeeeeiiee et 75
8.1.2. IMPIEMENLBLIONuuieiiii e 76
8.1.3. CONFIGUIALIONceeeee e 76
8.1.3. 1. WOIKFIOWS ... 76
8.1.3.2. PrOPOSAlSvuiiiieeii e 78
8.1.3.3. Installation and Product Variablesccccccoeviiiiiiiiiiiininnn. 79
8.1.3.4. SOFWAIE . .evveiei et 79
8.1.3.5. Partitioningccvvuiiiiiiiieeiiiii e 80
8.1.3.5.1. Algorithm for space allocationcccuveiierinnnnnnn. 80

8.1.3.5.2. Configuration OPLioNSc.oveevuiiieiniiiiiiaeieeeiieeann. 80

8.1.3.6. HOOKS ..vvviieeicieee e 85

vii

Y aST2 Documentation

8.2. Firstboot CONfigUIBLIONceeueieiiiii et 85
8.2.1. Enabling FirsthO0tccuuiieiiiiiieei e 86
8.2.2. Customizing YaST Firstbootccoeeviiiiiiiiiiii e, 86

8.2.2.1. CUStOMIZING MESSAOESevvnevvrieeineeeieeeiieeaeeeaneeeaneeeaneaees 86
8.2.2.2. LICENSE ACHION .uueei it ee e e 87
8.2.2.3. REEASENOLESieiiiiii et 87
8.2.2.4. Customizing Workflow Componentscccceeveveviineeeennnnnnn. 87
8.2.3. SCHIPLING .. eeeteee et 87

8.3. APl for YaST2 installation proposalceevuuieiiiieiiiiiciiii e e 88
8.3. L. MOLIVALION ...evtieiiiii e 88
ST 2 @ 1Y V1= 88
8.3.3. The Dispatcher INterfaceoovvveiiiiiiiii e 89
8.3.4. APl fUNCLIONS ...t 89
8.3.5. DUMMY Proposaloieuuiiiiiiiiiee et Q0

9. YaST Development AN TOOISciviiiiii e 91

9.1. YaST2 Development TOOISccuuiiiiieii e e e e e e e e 91
9.1, 1. QUICK SEAIT oeveeeeeeeeiee et ean s 91
9.1.2. WHEE ISIE? cevviiiiiii e e e 91
9. 1.3 MIQraliON ..ceeveeeiiii et 91
9.1.4. Trandation (P0) MoOdUIES)ceuuiiiie e 93
9.1.5. create-spec: Automatic creation of the. spec fileccoocoiiiiiinnnil. 94
9.1.6. OVErVIieW Of PathScccuviiiiiiiii e 9
9.1.7. Toplevel make Targetsin Detailccoeiveviiiiiiiiiiiiecieecie, 95

9.1.7.1. make package-localccooooiiiiiiiiiiiiiii 95
9.1.7.2.make packagecccooiviiiiiiiiiii 95
9.1.7.3. make check-tagversi onc..cccooviiiiiiiiiiiiiieeee 96
9.1.7.4.make check-cvs-up-to-dateccooeeviiiiiiiiiiiiieinnnenn, 96
9.1.75.make checkin-stableccooooiiiiiiiiiiii 96
9.1.76.make Stabl @ .oooiiiiii i 96

9.2. YAST2 LOGUING --tevtunetiniiaeteti ettt e et e et e et e et e e et e e e e 96
(& 1225 I 1 g 1 0o [0 (' o NPT 96
9.2.2. QUICK SEAIT ..evveeeeeiiie e et e e e e et e e e e e e e e e e e ae s 96
0.2.3.LOgaiNg IeVEIS . .couviiiii 97
9.2.4. LOgging fUNCLIONSuieiiicii e e 97
9.2.5. Additional fUNCLIONSvvieiiiiieee e 97

9.2.5.1. Setting thelogfilename ..., 97

9.2.5.2. Universal 10gging fUNCLIONS:vviiiiiiieiiiiieeecii e 97
9.2.6. COMPONENLSetnetieite ettt et et e e e e e e e e e e eaeeaes 97
0.2.7. LOGIIES ovniii e 98
S T oo = 011 == 98
9.2.9. LOGQING CONLIOIevuieiiiie e 98
9.2.10. ENVIronment CONIOlccuuviiueieeieeeie e 99

9.3. COUING INY CP ..ot 100

9.3.1. COUING RUIEScovviiieiiiie et 100
9.3.1.1. Thefileheadercccooviiiiiiiiiii e, 100
9.3.1.2. INAENALIONceeeiiieiiei e 101
9.3.1.3. WHItESPACE .. ceeiiiieieii e 101
9.3.1.4. Naming of variablescc.oviiiiiiiiiiiiicce e 102
9.3.1.5. Naming of fUNCLIONSccuvuiiiiiiiiiiiiiii e 103
9.3.1.6. BlocksS and BraCesoceuuiiiiiiiiiiieiiecc e 103
9.3.1.7. if-then-else, while, €fC.oviiiiiiiiiiiii e, 103
9.3.1.8. COMIMENES ...ieeeiiiee et 103
9.3.1.9. Other habitS ...oevuiveeiiii e 104

9.3.2. Examplesof bad COEcoouviiiiiiiiiiie e 104

9.4, ChECK YCP SYNEAX ..eeieeeiiiiiiieee ettt e et e e e e e eaanees 105
9.4. 1. QUICK SEA ..vvnieeiiiie et e et e e e e aaenas 105
9.4.2. Why thiSDOCUMENE?ccvviiiieiii e e e e 105
9.4.3. Header Comment ChecksSovviiiiiiiiiiiiiec e 105
9.4.4. Filename CheCKooviuniiii i 106
9.4.5. Author / Maintainer Entry Checkcccoiviiiiiiiiiiiiiiieeee, 106
9.4.6. CVSId: Marker CheCKccoiuiiiiiiiiiiieeiieiiie e 107
9.4.7. Trandatable Messages Checksoveviiiiiiiiiiiiicc e, 107

9.4.7.1. t ext domai N ChecKcocvviiiiiiiiiieiii e 107

viii

Y aST2 Documentation

9.4.8. RichText / HTML Sanity Checkcoooiiiiiiiiiiiiiiieiiiiiiiiiee e 108
9.4.8.1. Completeness of <p>/ </p> Paragraph Tagscccvneennnn. 108

9.4.8.2. Text Before, After, Between Paragraphscccooeveveeennnn. 108

9.4.8.3. No More Than One Paragraph per Messagec.cccvueennnn. 109

9.4.8.4. Excess Forced Line Breaks
 after Paragraphs 110

9.4.9. Widget / Ul Function Parameter Checkscoevvvviiiveiiineiiiieiieeenn, 110
9.4.9.1. Keyboard Shortcut Checkcooiviiiiiiniiiiieeen, 111

9.4.9.2. Trandatable Messages Checkcccovviiiiiiiiiiiiiiiiiiieeen, 112

9.4.10. Standardized Lib Function Checksccuuiiiiiiiiiiiiiiiiiieee 112
9.4.10.1. Duplicate Definitions of Wizard Lib Functions..................... 112

9.4.10.2. Definitions and Usage of Obsolete Functions 112

9.4.10.3. Usage of Predefined MeSSagescccuvevveeeviiniiiiiinneeennnnn, 113

9.4.11. Alternative Variable Declarationsccooeveuiiiiiiieiiineciieeieeenn, 113
9.4.12. Checking YCP EXamMPIESiiviiiiieii e 113
9.4.13.check_yCp andEMACScovuviiiiiiiii e 114
9.4.14. Extending CheCK_YCP oovvriiiiii i, 114
9.4.14.1. Adding new Widgets/ Ul FUNCtionsccccoeevevvneeennnnn. 115

9.4.14.2. Other EXTENSIONS ...uivvieiiieeiiiieeei e e e e e 115

9.5. The YaST2 MaCro RECOITEYoveuiiiiieei e 115
9.5. 1. INEFOAUCTION ...ttt 115
9.5.2. QUICK SEA ..vuneiiiiiie ettt et e et e e e e e 116

L0 G T 1 0701 116
9.5.4. What It ISNOt ...cveeiiie i e 117
9.5.5. Quirks and Limitationsocouuveienieiiieiiin e e 117
9.5.6. AnNatomy Of @MBCIO ...ccevuniiiiiiii e 117

F O 1 411 S 121
L YCP REFEIENCE ...ciiiiieeiei et 123
L WEM BUIINS Lo 127
SCROPEN ..ttt 129

S O 0 (01 o1 P 131
SCRGEINGIME ...ttt ettt e ettt e e e e e e e aaba e e e e 133
SCRSEIDEFAUIT ...oevviieeiiie e 135
SCRGEIDEFAUITeeveeeeiii e 137

N (0P 139
GEILANQUAGE ..ottt ettt e 141
GEEENCOOING ... eeeetie ettt ettt ettt e e e e eaanns 143
GetEnvironmentENCOAINGccvvuniiiiiiiieii e 145
SELLANQUAOE ... ettt ettt eas 147

REBA ... e 149
WV ettt 151
EXECULE ..o 153

Call e 155

[1. YCP BYIeblOCK BUIITINSeeiiiiieeiiiiie e 157
TODYLEDIOCK ... 159

LS = SRR 161

I, YCP HOE BUITTINS ..ot 163
1001] 0T RSP PR 165
L0 0 7= | U 167
IV.YCPINteger BUIltiNSooiiiiiieiiiii e 169
(0] 410 o = PP 171

V. YCP LISt BUIITINS coeviieeiiiie et 173
FIN e 175
[811= o= 0o PSPPSR 177

(o] 1= 1S 179

LSS (o] 1= T PSP 181
8]0 T0] o IR SPPPTTRPPPPIN 183
T 0 PP 185

L] L= PP USRPPUPPPRTN 187
MBDLISE e e 189
FESEMD e 191
LGOI e e 193

1015 = PSP 195

Y aST2 Documentation

LS 0 PP 199
SPIIESIIING e e 201
ChaNgE .o 203
B 205
LS .= 207
151010V PP 209
1SS = o PP 211
FOrEACK ... 213
L0 = S ST 215
V2 1V = 1 =0 1 1 217
NBSKEY e 219
L1 S 221
005 6] 0= o PPN 223
0= o] PRI 225
070 To] o [U PPPP 227
B 229
ChAINGE e 231
Sz e 233
FOrEACK ... 235
[(0]0 1= o R TP TUPTPPP 237
(15101017 SR RPRPPPRN 239
o0 o 241
V1. Miscellaneous YCP BUIILINS ...cvevnviiiiiiie e 243
L1 1S 245
LS == o TSP 247
(72700 (o]0 0 KPP 249
LS =110 (0] 1 PSP 251
LS =110 (0] 0 PR 253
=7 255
SFOMMIBE .. 257
Y2AEIOUG .o 259
Y2MITESEONE ...ttt 261
ATz 411 1 263
272 1 () P 265
D222 = o T PSP 267
Y2INEEINEL ...t 269
VI YCPPah BUIILINS ... 271
LS . ST 273
B 275
L0 1 TS 277
IX. YCP SUNG BUIINS ... 279
LS = U 281
ISSUDSIING .. eetee ettt e e 283
EONEXSEIING et 285
LS 0 0 T oo 287
SUBSEIING eveneii e e 289
N o 291
L0 [1= U 293
FOUPPE et 295
(0= S o | PP 297
JEIEIEChAS .o 299
FIEEICNEAIS oo 301
MENGESITING ettt ettt et e et et e e e e et e e e eeba e eeaan 303
fINAFIrStNOtOf ... e 305
FINAFITSIOf oo 307
FINAIESIOF ... e e 309
fINAIBSINOLO ... 311
L1=101)1(0101 [1 313
150 1S o] 001 PR 315
FEOEXPSUD ...ttt ettt e 317
FEOEXPLOKENIZEiiiei ettt e e e e e e 319
(0= (11 To [PPSR 321

L0001 1] oo 323

Y aST2 Documentation

L0 o PPN 325
(00077 01010 T PP PRPT 327
(o1 Y/ 011 o o Y/ o (U 329
CrYPOIOWTISN e 331
(0101 1= PRSP 333
ANGELEEXE ...t 335
XoYCPTEMBUIIINS .. 337
LS . ST 339
B 341
SYMDBOIOF e 343
LSS = 345
[(6]< 1 1 1 I PP 347
151010V PP 349
0 o) PP 351
[1. User Interface REFEIENCEoieiiii e 353
XI1. Event-related Ul Builtin FUNCLIONSccoovviiiiiiiiiieii e 357
UBZTUSEITNPUL <.t 359
ULEZPOHTNPUL < 361
UL TimEOULUSEITNPUL ... e 363
ULWAITFOTEVENT .ooviii e e e e e 365
X1 UL BUITtin COMMANAS ...oovviiiiii e 367
UL:SEtMOUIENAME ... 369
UL GEIMOTUIENAME ... e e e 371
ULSEILANGUAOE ...eeeeeei ettt et 373
UL GEPrOAUCINGIME ...ceviieiiiecee e 375
UL SEtPrOAUCINAIME ... e e e 377
UL SEtCONSOIEFONL ...ttt e e e e e e eees 379
UL:SEtKeyboardoveeii e 381
UL GEILANGUAGE ...eeneeteeei ettt et e e ee e 383
ULZUSEITNPUL Lot 385
ULZPOHTNPUL < e e 387
ULTIimMEOULUSENTNPUL ...t 389
ULWAITFOTEVENT ..oevieiiei e 391
0] @ o7 a1 T oo 393
UL:OPENDIAIOY ...eeevieee et 395
UL:CIOSEDIAIOQ() vvvvneeeerneteeiiie ettt ettt et e et e e e e e eee 397
UL ChangeWIdgeLocoeeeiieieiii e 399
ULQUENYWIGEL ...ttt e 401
Ul REPIBCEWIAGEL ...vn e e 403
UL:WizardCOommanduuneeieiiiieeiiii e e e e e 405
L] S 1 oo 1 407
ULZBUSYCUISOE ettt et e e e e e e e ees 409
UL REAMAWSEIEEN . .ceiieiiiei et et e e e eana e 411
ULZINOIMAI CUISOE ..t et e e e e e 413
UL:MaAKESCIEENSNOL ...ttt ettt e e eeeete e e eees 415
UL DUMPWIAQEITIEE . ovviiiiiieiie e e e e e 417
L0 LB L= oo o 1Y = o 419
UL StOPRECOIAINGMBEIO ...t 421
ULIPLBYMBEIO et 423
UL FaKEUSEITNPUL v 425
ULGIYPN oo 427
0 €T 11 o = 1Y/ g (o 429
ULIRECAICLAYOUL ...ttt e 431
UL ::PoStponeShortCULCNECKieiiiiiieiiiii e 433
UIICheCKSNOMCULSeeeiici e e 435
ULWIAGEIEXISES ..ttt 437
UL RUNPKGSEIECHON ...ivviiiiccie e e 439
Ul ASKFOrEXIStINGDITECIONY ..vvvneiiiieii e e e e e e e e e e 441
UL ASKFOrEXISNGFIIE e 443
Ul ASKFOrSaveR lENAmMEoeeiiii e 445
UL:SEtFUNCEIONKEYS ...t 447
ULZWEFM/SCR oot e e e e e e e eee 449

L0]I < o0 1o [T 451

Y aST2 Documentation

X111, Standard (Mandatory) WidgetSoveeeeiiieiiiiiee e 453
AAA_AI-WIAGELS .oeeviieeeiie et 455
REPIACEPOINT .. .iveiii e 459
10101 461
HSPBCING ..t 463
Lt e 467
o aMIE o 469
[101172 0 PSPPSR 471
HWEIGNE oo 473
=0 S UPSPPPPPP 477
LBl e 481
o 1 = SR 485
LOGVIBIW .ttt e 487
PUShBULLON ...t 491
MENUBULLON ...eeeetieiee e et e e e e 493
CRECKBOX ..ttt e 495
0 (0] =1 1 (o 497
RadiOBUIONGIOUD ... ittt 499
TEXEENIIY oo 501
MUIILINEEDIL ...vteeeiiieee e e e e e 507
S C 1< oo 0] 2T TP 511
MUItISEIECHIONBOX ..vviieiiiiiieee e 515
L0 1 4100 = 519
L= P 523
LI . 1= TSP 527
PrOgresSBalruieiii e 533
0 0= T 535
T 10T o PSP 541
PaCKagESEIECLONevuiiieii e 543
PROSPECIEL ... 545

X1V Special (0ptional) WIdQELSovvieiiiiiiiiiii e 547
HaSSPECIAIWIAGELneiiiii e 549
BarGraph ... 551
ColOredLEDE!coeeeieee e 555
DOWNIOBAPTOGIESSieiietieee et e et e et e et e e et eeeebe e e e eeae e eeeee 561
(D10 0] o 1 1o R 563
VMUIIPrOgreSSMELESiiiiiiieiii e 567
S o = P 569
PartitioNSPIITtEr ... 575
DB ..ttt aae 579
M1 e 581
WIZAIA oo 583

1. FrameworkS REFEIBNCEu i e 585

XV. Proposal APl REFEIENCEcouuiiiiiiii e 589
MaKEPIOPOSAl . .vviiiii i 591
ASKUSEY it 593
DESCIIPLION ..ottt 595
VT e 597

IV.YaST2 Library REFEIENCEcoovuniiiiiii e 599

XVI. Address manipulation FOULINESceeuuiieuiiiiiieeieeei e e eaeees 607
AdAress:iCheCK ... oooiiiii 609
AdAress:iCheCKaoovei 611
Y0 (0 1= O = o T 613
AdAress::Validd ... 615

XVIL. Confirmation FOULINESc.uviieniiiiieei e e 617
ConfIrMIDEIBLE ... 619
Confirm::DeleteSElECLEccvviiiiieii e 621
ConfirmzDEIECHIONeveeviieeee e 623
Confirm::MUSIBEROOLivieniieiiei e e e 625

XVIHI. Hosthame manipulation FOULINESveiieiiieriiiiieeeiie e 627
HOStNAME:ICNECK ... 629
Hostname::CheckDOmMaiNocouuiiiiiiiic e 631
Hostname::CheckFQiiiiii e 633

Xii

Y aST2 Documentation

Hostname::MergeFQoooviiiii 635
HOStNaME::SPIILFQ ... 637
Hostname:ValidDOMAaINcoeviiiiiieeeeieeiiie e 639
HosStname:ValidFQovvniiiieiii e 641
XIX. Generic HTML formattingooeeeeiiiiiiiiiiieei e 643
L I LY = T o R 645
HTML:COIOrALISE ..neeeiieiiie e 647
HTMLIICOIOMZE ..o 649
HTMLHEBAING ovvvviiie e 651
HTMLELINK e e 653
L I T 655
HTMLGLISIENG e e e e 657
HTMLLISHEEM et 659
HTMLELISESEAT oo 661
HTMLENEWIINE e 663
HTMLENEWIINES e 665
HTMLIIPAIa oo 667
XX, IP manipul@tion FOULINGESuuiiieiiiiiiii e 669
IPICNECK e 671
IPICRECKA ... 673
IPIICRECKG ...t 675
[P::ComMpPULEBIOadCaSstcvvvneiiiiiii e e e e 677
[P::COMPUEENEIWOIK ... 679
TP TOHEX e 681
]t o] 1g 1 o = PP 683
[P TOSIIING ettt et 685
IPV@IIAA e 687
XXI. Map manipulation FOULINESccvueiiiieiiceee e e e e e e e e e e e 689
MaP: iChECKKEYS ..ot 691
MaP:FTOMSIIING .oeeviee e e 693
MEPIIKEYS .. 695
M AR KEYSTOLOWET ...ttt eaes 697
MaD: KEYSTOUDPES ittt 699
=T 0 1S 1 o 701
MEPIVEIUBS ..o 703
XXI. Netmask manipulation FOULINESc.uuuieiieiiieeiiiii et 705
NEtMASK IChECK ...t e 707
NEMESKICNECKA ... 709
NEMESKICNECKE ...t 711
NEtMESKIFTOMBILSviieiciieei e 713
NS = S G 0] = £ 715
XXI11. Popup dialogs for browsing the local networkccccoeeveiiiiiieiiiinnnnn. 717
NetworkPopup::ChOOSEITEMuiiiiii e 719
NetworkPopup::HOSINGMEc..iiiiiiiiiee e 721
NetworkPopup::NFSEXPOIToiiiiiiiieee e 723
NetworkPopup::NFSSEIVESccvuiiiiiiiii e 725
XXIV. Packages manipulationcooeeeuuiiiiiiinieeii e 727
Package::DoINStallcooeiiiei e 729
Package::Dolnstal lANAREMOVEccovuiiiiiiiicii e 731
Package : DOREIMOVEieiiieii e e 733
Package::AvaillableAll ... 735
Package::AvailablEANYcovvii i 737
Package:: INStall AIIMST ...oovvnieiiii e 739
Package::INStallM STcoeeviieiiii e 741
Package::InstalledAllooeiiiii e 743
Package:: INStalledANY ... 745
Package::LastOperationCanceledcoevviiiiiiiiiiiicii e 747
Package::PackageDialogevvueiiiieiii e 749
Package::REMOVEATIIMSTiiiiiiiiei e 751
Package::REMOVEM STcoviieiiiii e 753
Package::RUNSUSECONTIQocoviiiieiiiii e 755
XXV ProgreSSDarooee i 757
Progress::ClOSESUPEITONccvuiiiiiieiii e i ee e e e e e e e e e e ees 759

Xiii

Y aST2 Documentation

Progress:iFiNISN ..o 761
ProgresS:iNEW ... 763
Progress:iNEXISIAgE . ..iviiiiiiii e 765
Progress::NeXtStageSteDovvuiiei e 767
Progress:iNEXISIEDcvvniiiieee e 769
Progress::OPENSUDEITONueieiii ettt e et e e e eeens 771
Progress:iSIMPIEoove e 773
PrOgrESS IStA0E .. ceieeiee e 775
PrOg eSS S vttt 77
Progress:: StEPSUPEIOruivei e e e e e e e 779
Progress:TItle ... 781
PrOgrESS iOff oot 783
PrOgrESSIION ..ot 785
XXVI. Messages handlingooeeeoiiiii e 787
RePOrt::ANYQUESLION ...cevuiiiiicii e e e e e e e e e e 789
REPOIT:CIEArALL oo 791
REPOIt:ICIEANEITONS .vuiiiiiiii e 793
ReEPOrt::ClEAMESSAESeeve et 795
RePOrt::ClEAWEININGS ... 797
Report::ClearY €SNOMESSAGESucvvrnieiieei et e e et e e e eeneees 799
RS o0 B BT o B Y o N 801
Report::DisplayMESSAGESuuevveieiiiiiieieeie e e e 803
Report::DisplayWarningScooeueieiiiiiieeeie e 805
Report::DisplayY @SNOMESSAgEScccvvunieiiiiiiieieiiii et 807
REPOITIEITON L. 809
REPOIIIEXPOIT ... e 811
REPOIt: GEIMESSA0ES ...uiviiviiiii it 813
Report::GetMOdIfiedoveiici e 815
REPOIIIMPOIT ... e 817
REPOMIILOGEITOIS ..o e 819
REPOIt:ILOGMESSEJESiiviiiiiieiii et 821
REPOrt::LOGWEININGSuiiiieii et 823
Report::LogY @SNOMESSAGES ...vvuiviiiiiiiiiii ittt ans 825
REPOM:IMESSAE ...uieeiei e e 827
REPOIIINUMEITONS ...t 829
RePOrt:NUMMESSAJESovvniiiiiiiiiiiei e 831
RePOrt:INUMWEININGS ...cevveieiiiii et e e 833
Report::NUMY ESNOMESSATESvviieiiei et ettt e e eaes 835
Report::SEtMOdifiedoiiiiii e 837
S 00 00V = 839
REPOIT:ISUMIMAIY ...t 841
REPOI:WEINING .. 843
XXVII. Rich text manipulation rOULINESooeiiiriiieiiiiieeeee e 845
RIiChText::RICh2PIaiNouieiiii e 847
XXV Wizard SEQUENCESuuiiiiieiii e e e e e e e e e e e e e e e e eaaeees 849
=011 =0 ol o o 851
SeqUENCErIWS 8li8S ..oiiiviiiiiiii e 853
Sequencer::WS CheCKoiiiiii i 855
SEQUENCETIWS BITOF ..eeeiiiiiiii et 857
SeqUENCENIWS NEXE ... 859
SEOUENCET WS POP iviiiiiiiiiiie ettt e e 861
SeqUENCET WS PUSN .o 863
SEQUENCETIIWS FUN .ottt e 865
SequeNCEr::WS SPECIAL ... 867
Sequencer::WS testallvoiiiiii e 869
XXIX. Service manipulationooouuiiiiiiiii e 871
SENVICEAIUSE e 873
SErVICEIDISAIE ... 875
SENVICEIENADIE .. 877
SerVICEIENADIEAoviiiiii e 879
SEIVICEIIEITON ..ot e e eans 881
SENVICEIFINEIUNG ..ot 883
SErVICEFUITINTO Luveie e 885

Xiv

Y aST2 Documentation

SEIVICEIINFO i 887
SEVICEIREIOA .ooiiiiiie e 889
SEIVICEIRESIAIT ..vvvnii et 891
SerVice RUNINITSCIIPE covvnii e e 893
Service::RUNINItSCHPLOULPULoevevveieiiiiie e 895
SEIVICEISIAM ..t 897
SEIVICEISIAIUS ...ttt et 899
SEIVICEIISIOP -ttt ettt 901
XXX. String manipulation FOULINESccuueiiieiiie e e e e e e e e e 903
SHING:CAINUM Lo e 905
SHNG:CAIPNA ..o 907
SUNGICDIGIT .t 909
SUNGIICGIAPN ... 911
SENGIICLOWE ..ttt e 913
S T 0T O T | 915
S] 0T O U o o 917
SHNGIICSPACE ..t 919
SUNG I CUPPEN et 921
SUNGICXAIGIT e e 923
StrNG:ICULBIANKS ... 925
String::CUtREGEXMEICHovviiiii e 927
SHINGICULZEIOS ..vvni i e e e aaas 929
SUING I ESCAPETAOS .. eeeevie et e ettt ettt e e e e eeaanns 931
SNG:FIrSICRUNK ... 933
SUNGIFOMEALSIZE ... 935
String::FormatSizeWithPreCiSiONoiveiiiiiiiiiiee e 937
SHINGIPA .oe e 939
SHING: i PAOZENOS ...ovvcee e 941
SHNG::ParSEOPLIONS ... 943
SUNGIQUOLE ... 945
SUNG:IUNQUOLE .t 947
String::ValidCharsFlename ..o 949
XXXI. Support for summaries of the configured devicesccooevviiiiiiiieinn, 951
Summary::AddHEBAErccoevniiii i 953
SUMMENY:AAALINE ...t 955
SUMMErY::AAALISHTEM ..eeni e 957
SUMMANY::ADANEWLING ... 959
Summary::AddSIMPIESECIONccuuiiiiiiei e 961
SUMMANY: ClOSELISE ..vvvniiiii i e 963
SUMMANY I DEVICE .vviiiiiiii e e e s 965
SUMMENY::DEVICESLISE ..evvuieiiiii e 967
SUMMary::NotCoNfiQUIEdooeiiiiiiiiiiii e 969
SUMMEANY:IOPENLISE ..t 971
XXXII. Type repository for validation of user-defined typesccoevveviveennneene 973
TypeRepository:: TYPEREPOSITONYcccueiiiiiiiiiieiie e 975
TypeRepository::enum validatorcccoovviiiiiiiiieiiiree e, 977
TYPEREPOSITONY:IIS B coevviiiiiii e 979
TypeRepository::regex_validatorcooovveiiiiiiiiiiii e 981
XXX, Manipulate and ParsSe URLSuiiiiiiiieiiiii e 983
URLZZBUITA <ttt e e 985
URLICHECK .. 987
URLIIPAISE ..ottt e 989
XXXIV. Wizard dialogs for hardware configurationccoeeveviiiiiiiiinneennnnn. 991
Wizard_hw::ConfiguredCOontentccuuveiieiiieeiiiieece e 993
Wizard_hw::DetectedContentoveuviiiiiiiiiei e 995
Wizard hwiiSIZEALLEAScoviiiii i 997
Wizard hw::SpaCingATouNdccoovniiiiiieiiieci e e 999
0.9, QAR VT 1 o o - oo 1001
Wizard:: ADOrtACCEPIBULLONBOXovveveieiiiiiieeeii e 1003
Wizard:: AbortApplyFiniShBUtONBOXcccvuuiiiiiiieiiiiiineeci e 1005
Wizard::AbortlnstallationAcceptBUtONBOXcccvvuieviiiiieiiiiiieereiinee, 1007
Wizard::ACCEPIDIAIOF ...cvuieeeieiiiieee e 1009
Wizard:: AAAMENU ...oovviiiiii e 1011

XV

XVi

Y aST2 Documentation

Wizard:: AAAMENUENLTY ...covviiiiii e 1013
Wizard::AdASUDMENUovenieii e 1015
Wizard:: AdATIEEITEMoviieiieii e 1017
Wizard::BackAbortInstallationNextBUttONBOXc.ovvvvviiniiniiniininnnnn. 1019
Wizard::BackADbOrtNextBUtONBOXccvvveieieiiieiee e 1021
Wizard::BaCkNEXtBUIIONBOXuveieieiriiitee e eee e ee e 1023
Wizard::Cancel ACCERIBULIONBOXcccvvuiiiiiiieiiiii e 1025
WizZard::ClearCONENTScuiviniiiiei et ee e ens 1027
Wizard::ClearTItlEICONcvieiinii e 1029
Wizard::CloSEDIAlOgcvvveiiiieeii e e e 1031
Wizard::CreateDi@logccuuuiiieiiieiiii e 1033
N = o R O = (=Y = LU 1035
N o B O = | (=] I = T 1037
Wizard::Create€TreeDialogcevuniieeieii e 1039
WizZard::DEEEMENUSceiviiniinii i 1041
Wizard::DElEtETIEEITEMS . cvieiieiiii e 1043
Wizard::Disabl@ADOMBULIONoveeieieee e 1045
Wizard::DisableBackBULIONoeuieiiieiiiie e 1047
Wizard::DisableCanCelBULIONociinieiiiii e 1049
Wizard::DisableNEXtBUIIONc.oiviiiiiiiii e 1051
Wizard::EnablADOMBULIONcviviieiiiiiiici e 1053
Wizard::EnableBackBULIONcuovviiniiiiiiiiei e 1055
Wizard::EnableCanCelBULIONccuvviieieie e 1057
Wizard::EnableNEeXtBULIONoviieieiii e 1059
Wizard::GenericDI@loguvviereiiiiiiiie e 1061
Wizard::HideADOMBULIONovieiiiiieeie e 1063
Wizard::HideBackBULLONc.oouiiniiniitiiiiiei e e e 1065
Wizard::HideNEeXtBUONcviiviiniiiiie e 1067
Wizard::1SWizardDi@logooeeevuiiiiiiiieeeee e 1069
Wizard::NextBaCkDialOgccevuuiiiiiiiieeiei e 1071
Wizard::OpenAbortApplyFinishDIialogoveveeiiieiiiiiineiiieeeee 1073
Wizard::OpenAcceptAbortStepsDialogocevveveiiiiiiiiiieeee e 1075
Wizard::OpenAcCeptDIialogcc.uvviiniiiiiieiii e 1077
Wizard::OpenAcceptStepSDIalogccvuveenieiiieeie e 1079
Wizard::OpenCustoMDI@logccvvuiieeiiieeiiiii e 1081
Wizard::OpeNDIalOg «.....oeeeeiieiiei e 1083
Wizard::OpenNextBackDialOgcccuuiiiiiiiiieiiiiieeee e 1085
Wizard::OpenNextBackStepsDialogovevviveiiiiiiiiiiiiieec e 1087
Wizard::OpenTreeNextBackDialogccocevvveiiieiiiiiiiii e, 1089
Wizard::QUENYTIEEItEMcvii i e 1091
Wizard::ReplaCeADOIBULIONcoeveviiiiiii e 1093
Wizard::ReplaceBackBULtONc.uiviiiiiiiiiiiiiiie e 1095
Wizard::ReplaceCUuStOMHEIDoovviiiiiiiic e 1097
Wizard::ReplaCeHEIDcovniiiiei e 1099
Wizard::ReplaceNextBULtoNooeviiiiiiiii e, 1101
Wizard::RestoreADbOrtBULIONc.ovviieiiiiiiiei e 1103
Wizard::RestoreBackBULIONoeuieiiieieei e 1105
Wizard::RESIOTEHEIP ..vvnieiiii e 1107
Wizard::ResStoreNextBUIIONoouieiinieiiiie e 1109
Wizard::RestoreScreeNShOtNAMEvvinieiiiieeiee e 1111
Wizard::Retrangd ateBULtONScviiviiiiii e, 1113
Wizard::SElECITIEEITEM . .viviieiie e 1115
Wizard::SEtADOMBULIONvveieeeee e e 1117
Wizard::SetBackBUITONcuinieieiie e e e 1119
A= o B < () = | 1121
Wizard::SetContentSBUIIONSceieieiii e 1123
Wizard::SetDESKIOPICONccvvciiii e e 1125
Wizard::SetFocusToBackBULIONoeviiviiiiiiiee e, 1127
Wizard::SetFOCUSTONEXIBULLONcuvieeeieeie e 1129
Wizard::SEHEIPTEXL ... 1131
Wizard::SEINEXIBULIONoeieiieieeie e aeens 1133
Wizard::SEtProdUuCtNAIMEonieiiiii e 1135
Wizard::SetSCreenShOtNAIMEcviiviieii e 1137

Y aST2 Documentation

Wizard::SETItIEICON ... 1139
Wizard::ShOWHEID ..o 1141
WiZard: I USEMTNPUL ©..eeeccce e e e e 1143
XXXVI. Commonly used popup didlogscccueviiiiiiiiieii e 1145
POPUP:ZANYMESSAJE ...ceeoeiieiceee ettt 1147
POPUP::ANYQUESIION ... 1149
POPUP:ANYQUESIIONS ...t 1151
Popup::AnyQUEStIONRICTEXEcvveiiiieei e 1153
Popup:: ANYTIMEAMESSAE ...uucvviieiiii e e 1155
Popup::ClearFeedbackcccoviiiiiiiiie e 1157
Popup::ConfirMABOITc..uiiii e 1159
POpUP::ContiNUECENCEuiiiiiii e 1161
Popup::ContinueCancelHeadlingooooviiiiiiiiiie e 1163
POPUD: I EITOr e 1165
POPUP - LONGTEXE ot 1167
POPUD M ESSA0E ...t 1169
POPUP::MOAUIBETTON ... 1171
POPUP::NOHEAAIING ... 1173
POPUPIINOLITY v 1175
Popup::REAIYADOIT ... 1177
Popup::ShowFeedbackcccoviiiiiii 1179
POpUP: i ShOWFIIE ... 1181
POPUP:ISNOWTEXL ...t 1183
POPUP::SNOWTEXTTIMEvvniiiiiie e 1185
Popup:: TIMEdANYQUESEIONccevvieeiiii et 1187
POPUP:TIMEAEITON ...t 1189
Popup:: TIMEAMESSAGEuivvneiiiei e e e aaaas 1191
Popup:: TimedOK CanCelcccviiiiiiiiii e 1193
POPUP::TIMEAWEINING ...ceeveeieii e 1195
POPUPIWEIMING .. 1197
POPUPIIY ESNO .o 1199
Popup::YEeSNOHEAdIINEiiiiiii e 1201

XVii

XViii

List of Figures

2.1, The YaST ArCHITECIUIEcue et e e e e e e ea e 6
3.1. Output of the “Hello, World!” -programcoceeiiiiiiiee e 13
5.1. SCRHIEIrArCNY TIEE ..cvviiiiiiieiii e e e e e e e e e e e 38

XiX

XX

List of Tables

3.1. Special CharaCtersin StHNGSc.uuuiiiiiieeeii e 15
3.2. Specia charaCtersin Pathsco.. i 17
5.1, SCRINOGE TYPES ..ot eeiieeii et e et e e e e e e e e e e e e e e e e e et e e e et e e aaneeeanaas 37
5.2. The SCR-COMMENGSvvvruiiieeeiiieeiiiiie ettt e e e e ee e e e 39

XXi

XXii

List of Examples

3L HEIOWOTIA INYCP it e s 11
3.2, SYMDOI CONSLANES ...ttt e e e e eean s 14
3.3, INLEYEN CONSLANTS ...ivuieiiiiie ettt et e e e et e e et e e e r e s n e neaaeanennas 14
I o o] gL = | PR 14
3.5, SHING CONSLANESeeeeiieeeii ettt e e e e et e e e e e 15
3.6. BYtEDIOCK CONSLANESceeieiieiii e 15
37 LISt CONSEANES ...eiietieiie et e et e e e e e e e e e e e eanas 15
3.8. M@ CONSLANTSeeiii ittt et e et et e e e e e e e e en e 16
e = 1 gl o0 = 0| P 17
310, TEIM CONSLANES ... eeeeeeteeeti et ettt et e et et e et e e e e et et e e et e e et e eennnas 17
G300 I T = oo o0 = 1 £ 18
3.12. Type checking and datatyPeanycceeuuiiiiiiiieiiii e 18
3.13. LOCAIE CONSLANES ... oieeieeeii e e et et e e e e e e e et e e e e e et e e e e aa e e eaneeeannas 25
.04, COMMEENES ...ttt ettt ettt et et et et e et et et e et e e e ea e e e e e e e eaaenes 26
3.15. Variable DeClarationooouuuiiiiiiiiieiei e 26
3.16. Variable ASSIGNMENLceveiii et e e e e e e e e e ea s 26
3.17. Conditional BranChccouei 27
318 WHITE() LOOP ettt ettt 27
3.19. dO..WHIlTE() LOOP ettt 28
3.20. repeat...Until() LOOPueeeneiieiit et 28
I o == - =111 | P 28
3.22. CONLINUE SELEIMENTiieiei et e ettt e e e e et e e et e e e eaen s 29
A B (01 0 = = 0 | P 29
3.24. FUNCLION AEFINITION ...eeeiiee e 30
3.25. FUNCLION AECIAIratioNccueeiiiieii e e 30
3.26. INCIUAE @TIIE e e 31
3.27. Variable scopes and BIOCKSuiiiiiiii e 31
G022 T (0] 1= Tox 1) 1 o o J 32
3.29. lStMAP() SLAEEMENT ...t e 32
3.30. MAPlISt() SEAEEMENT ...t 33
3.31. mMAPMAP() SLAEEMENTeeeeeeeeeeii et 33
5.1. Operating the SCR from the command liNecooiiiiiiiiiiiii e, 40
7.1. SPECIfYING ProportioNS Lcvueiciii e e e e e e e e 49
7.2. SPECITYING PropOrtiONS 2uicii et e e e e e 49
7.3. SPeCifying ProportioNS 3 it 50
T SPBCINGS ..ttt ettt e a e 51
7.5. Grouping RadiOBUIIONScieiiiiiiiii et 52
7.6. Specifying the Size of Scrollable Widgetsooouiiiiiiiiiii e, 55
7.7. TheNOtITY OPLION ..ceve i e e e e e 60
8.1. FIexible Partitioningieiuniiiiiiiii e e e 84
8.2. Proposal EXaMPIEiiiiiii i 89
9.1, YAST2 Ul MACIO fill@ .eeuiiii e e 118

XXiii

XXiV

Preface

Administering a Linux system at the lowest level is sometimes not an easy task. If it should be done
manually, it requires a very experienced and knowledgeable person, willing to browse and edit very
many configuration files. As a result there have been many efforts to create intelligent tools that
provide rather automatic means to accomplish this challenging and (at the same time) tedious task.

One of these toolsis YaST, the SUSE Linux™ installer. Being the result of a rather long period of
development, it is by now a very large and capable system, well suited to install and administer a
SuSE Linux™ system. While the internal functionality of YaST is quite multifaceted and therefore
not exactly easy to understand, it should not be kept as a secret. Rather the world shall be encour-
aged to make use of the mechanisms YaST can provide.

This goal can be achieved because YaST is not a closed monolithic system but has a high degree of
modularity. In fact it consists largely of modules that could as well be created by people not related
to YaST development. For example hardware vendors could provide a YaST module for customiz-
ing specific system settings related to their particular piece of hardware. From the user's point of
view this would be much more comfortable than editing configuration files by hand.

Of course this can't be done without some knowledge of the YaST internal functionality. So this
document tries to lighten things up by advancing from the unsubtle connections in the beginning to
more and more detailed explanations towards the end. However, describing the particularities of this
matter in full detail would easily fill several heavy books which in turn would contradict the goal of
introductional simplification. Furthermore some of these “details’ are subject to moderate change
service, which would render “ static” documentation like this one outdated rather quickly.

To aleviate these problems, this text very often refersto the “official” YaST devel opers documenta-
tion that can be found in/ usr/ shar e/ doc/ packages/ yast 2* (especialy towards the end).
Aside from the references to be found in the following text, this location provides very valuable in-
formation regarding the whole YaST environment. To have access to these files the following pack-
ages must be installed:

o yast2-devel

» yast2-core-devel
 liby2util-devel

» yast2-packagemanager-devel

- Note

This document is available in HTML and PDF. However, the primary target format is
HTML because of the many references to the YaST developers documentation. When
viewed with a web browser these links are functional and provide easy access to the
respective files. Unfortunately in the PDF format the links are not functional rendering
this document not very useful when it comes to the details.

1. What's Inside

This document is subdivided into the following chapters:
Introduction. A brief explanation of the intention and nature of this document.

YaST - TheBig Picture. Thisisa short depiction of the YaST installer and the YaST environment
as such. The architectural peculiarities of YaST are explained as far asit is necessary to understand
the elucidations that follow thereafter.

XXV

2. Style Conventions

The YaST Language - YCP. This chapter is dedicated to the YaST language that constitutes most
of the high-level functionality of YaST. Sections covering the basic language elements are accom-
panied by others that deal with user interface creation and program structure.

SCR Details. In this chapter the YaST System Configuration Repository (SCR) is explained in
some concise detail. It shows how to access configuration data and hardware data from within YaST
modulesin a consistent way.

YaST Modules. Some explanations regarding the different types of YaST modules as well as some
rules for writing them.

Appendix A. References. Throughout this document there are numerous references to the YaST
developers documentation. To ease access to these links this appendix is mostly a dense index of
those references.

2. Style Conventions

XXVi

Throughout this document some conventions regarding the typeface of printed text are used:

» Emphasised text is used to denote important parts of the text.

» Product names, file names and paths are printed using | i t er al typeface. Furthermore cut-outs
from programs that are embedded in the normal text flow are printed this way.

e Commands and command lines are printed using the command typeface.

» Keyboard keys are denoted asin CTRL-C.

e The description of programming language elements is displayed as shown below.
Synopsis: while (condition) loop_body

The parts of the language construct are printed like commands while any arguments are printed
emphasized.

Chapter 1. Introduction

YaST isthe installation program used by SUSE Linux™ to install Linux on a system and to admin-
ister this installed system thereafter. The notation “program” is a bit misleading here because in fact
YaST consists of many components and layers. Therefore one may as well ragard YaST as an in-
stallation and administering environment.

Among the most important components in this environment are the YaST-modules which are usu-
ally written in a YaST-specific language called YaST Control Language (YCP). With exception of
some rare cases the whole high-level functionality of YaST is formulated in YCP. When YaST is
running, the YCP-modules are interpreted by the low-level YaST-components and the YCP-code
makes use of the infrastructure provided by them. The possibility to add such modules at any time
realizes the concept of extensibility that isinherent in YaST.

This concept of extensibilty by means of modules has been designed into YaST from the very be-
ginning. In fact YaST-modules are the layer of YaST the user comes in contact with. Nearly every
dialog on screen during the installation is realized as a YaST-module and there are also modules
that act behind the scenes to care of specific pieces of hardware, e.g. the keyboard.

The YaST-modules mentioned so far come ready-made with the distribution and provide the core
functionality to install and administer a SUSE Linux™-system, but this need not and should not be
the end. The extension facility is intended to be also used by “third party people’, e.g. harware
vendors, who want to contribute YaST-functionality in some way.

To pave the way for this intention to come alive this document will provide some insight into the in-
ner mechanics of YaST. The primary goal of the following elucidations is to make available the in-
formation that is needed to write YaST-modules that conform to the programming paradigm im-
posed by YaST.

What This Document Is. This document explainsin some detail how to extend the functionality of
YaST by means of modules. Of course every module of more than trivial functionality will have to
make use of the features that are provided by the YaST-core-components and other YaST-modules.
While the official YaST developers documentation is the primary knowledge base for all YaST re-
lated information, it is a bit overwhelming for everyone who tries to get into the matter for the first
time. Therefore this document tries to provide a gentle introduction by explaining things rather ex-
plicitely in the beginning and getting more and more concise towards the end. By providing very
many references to the devel opers documentation this document can be thought of as a “guided in-
dex” to this voluminous material.

What This Document IsNot. This document will not explain the “binary” particularities related to
YaST, i.e. there will be no implementation notes on how the low-level machinery of YaST is real-
ized. Because YaST implies the module concept for extensibility, only this approach is promoted
here. The “engine” that executes these modules and how it is assembled is subject to the following
explanations only in so far as it is neccessary to understand the interaction of the various compon-
ents.

The Audience Of This Document. So this document is intended for all people who want to make
use of the YaST-functionality by providing modules for a specific task. Additionally the informa-
tion presented herein might be interesting for all those who want to adept something about the whys
and wherefores related to YaST as such. Furthermore, to get most out of this reading, the reader is
supposed to have some programming experience in a structured programming language, ideally C/
C++. Some expertisein functional programming could also be helpful but is not really necessary.

Chapter 2. YaST - The Big Picture

To be able to create a YaST-module it is necessary to have understood how the extensive YaST-
world is structured, which components there are, what they do and how they do it. Therefore prior to
going into closer detail we'll step back from the blackboard and have alook at the big picture first.
By doing so you will have the opportunity to get an overview of the ample terrain YaST is living
on. While you don't have to understand each and every byte YaST consists of, having seen the
wholeissue will ease your understanding of the details we will come across.

2.1. Overview

YaST has been invented to have an extensible and fairly standardized means to install and manage
SuSE Linux™ on a system. Basically YaST serves three main purposes:

o Installation of SUSE Linux™ on a system
» Configuration of theinstalled system

* Administration of the installed system

To provide a solution to the resulting demands that has a lifetime extensible well into the future this
solution had to be flexible and maintainable. Consequently some key concepts determined the
design of YaST. In particular it was the strict separation of:

* Theuser interface
» Thefunctiona code doing the job

» The datarepresenting the current state of the system

Furthermore YaST has some very specific attributes that make it unique for the user as well as for
those people who are developing it or contributing to it. The following sections outline some of the
features of the YaST installer that should be seen as a guiding line for module devel opment.

2.1.1. Access To The System

Managing a SUSE Linux™ system requires direct low-level access to the system which generally
means reading and writing configuration data. Of course this could be done manually by a know-
ledgeable person using a conventional editor. A more comfortable and in most cases safer way isto
use YaST. Consequently YaST must be able to handle this configuration data on the system level.
By handling the original data YaST activities take into account manua editing that might also oc-
cur. Thus nobody is forced to use YaST exclusively for configuration tasks.

In YaST the access to system configuration data is realized by means of a special component (or
layer if you prefer), the System Configuration Repository (SCR) (see below and Chapter 5, SCR De-
tails). The SCR component basically consists of a number of so-called agents that have been created
to accomplish a specific kind of access. For example there is an agent to run shell-commands and
there is another one that reads and writes ASCII-files of a specific format. Additionaly there are
agents that provide access to the system hardware e.g. by taking hold on the proc-file-system.

All these agents are gathered together under a common hood, the SCR-API that can be used from

within the YaST-modules in a consistent way. In summary the SCR provides kind of a view on all
kinds of data, either YaST2 internal data, original system config files or hardware data.

2.1.2. Reasonable Suggestions

2.1.3. Workflows

YaST implies lots of artificial intelligence to provide reasonable suggestions for the various tasks.
During installation the target system is thoroughly analyzed with respect to its hardware components
and in most cases YaST succeeds in suggesting a proper configuration for them.

These suggestions are presented in an overview dialog that shows the main characteristics of the
system to be installed and how YaST would handle them. If you are satisfied with these automatic-
ally generated settings you can simply accept them. If not, each of the system configuration categor-
ies can be “activated” to be changed manually. This is where the workflows come into their own.

2.1.3. Workflows

If you decide to change a specific configuration category this is usually being done in a workflow.
Workflows are used to lead you through the steps neccessary to accomplish a specific task. The
steps are generally small to avoid an information “ overflow”. At the end of the sequence the task has
been accomplished and the changes are made permanent in the system.

As was stated above, you are not forced to do it thisway. You could as well edit configuration files
by hand but YaST can offer as much help as possible for this. Sometimes a workflow has multiple
branches for “novice” and “expert” modes. The novice mode fills in the default values and tries to
determine as much as possible automatically. The expert mode offers full control and allowsto enter
even unreasonable values.

By providing pre-configured workflows and configuration data, it is possible to automate almost ar-
bitrary configuration tasks with YaST. From adding a user, to installing a completely configured
SUSE Linux™ on specific hardware, nearly everything is possible.

2.1.4. Modules And The YCP-Language

Every workflow is assembled from rather small steps, implemented by means of YaST modules writ-
tenin a YaST-specific scripting language, the YaST Control Language (YCP). These YaST-modules
are then called in a predefined sequence to compl ete a specific task.

In fact it is possible to even write modules in bash and perl as long as the module need not have a
user interface, i.e. it is not interactive. Such non-interactive modules typically handle specific prob-
lems like controlling a particular piece of hardware and can be called from within YCP-modules.
This building block approach makes constructing complex workflows easy and maintainable.

2.1.5. User Interface

The YCP language is also used to control the user interface (Ul) presented on screen. The Ul dis-
plays the information already known by the system and retrieves the information entered by the
user.

There are two modes of operation:

» Text mode for console-based service

In text mode the user interface is presented in the NCurses environment that provides window-
ing capabilities and entry forms on a text-based console. Mouse support is neither possible nor
necessary here because al dialogs can be operated using only the keyboard.

* Graphics mode for X11-based service

In graphics mode the well-known Qt-system is used to present the dialogs in a graphical way us-
ing a running X11-server. Operating these dialogs follows the common habits of graphical user
interfaces.

It is important to notice here that both methods principally use the same YaST-specific YCP-API to
build the dialogs. While there are some (rare) cases where the YCP-code has to distinguish these
modes, the dialogs are usualy programed for both worlds in in one single source with the same

2.1.6. Summary

code.

2.1.6. Summary

In summary YaST provides the following features, some of them having aready been mentioned
above:
e Systemaccess

YaST provides thorough probing of the system hardware and presents the information gathered
thereby viathe SCR-API. The SCR is also the means for reading and writing configuration files.

* Reasonable Suggestions

Based on the system analysis and predefined configuration data, YaST is able to provide reason-
able suggestions for almost any configuration task.

* Workflows

Management of particular configuration categories is usually realized in form of workflows that
split up the whole task into small steps.

* Modulesand YCP

The steps congtituting a workflow are usually realized as YaST-modules that are written in the
YaST Control Language (YCP)

e User interface

The user interface of YaST is readlized by means of a specific API from within the YCP-
modules. This API supports atext-based console-mode as well as a graphical X11-mode.

* Internationalisation
YaST provides support for various languages.
e Multi-platform support

YaST provides support for various platforms like Intel ™ (x86), Apple™, IBM™ (s390) etc.

2.2. YaST Architecture

YaST2 is a modular system for Linux installation and system administration. The design goals in-

clude:
* FHexibility
» Extensbility

* Maintainability
» Network transparency

support administration of remote hosts or virtual machines on mainframes, machines without
CD/DVD drives, rack-mounted machines

» User interface independence
must run in graphical and text-only environments and serial consoles

» Cover the whole range from novice users to expert system administrators

2.2.1. The SCR (System Configuration
Repository)

To achieve the above design goals, YaST2 is split up into a number of components for each indi-
vidual task:

Figure2.1. TheYaST Architecture

YaST2 System Architecture

YCP Scripts Perl Scripts 7?7 —r»
[AN [\ I—
[N 1\ |
»
N 3 »

WFM

(Workflow Manager)

Installation Target

ul (System Configuration
{User Repositgpy.

Interface) Language =

YCP Interpreter Bindings 8- a0 —
L] (Perl, ... \
| ot \

(X11/ graphical) | | ‘ ¥ ¥ [Agents

Web-Ul 7

(For future use)

|

e —r—
(YCP Data Types) Elc s

targethash

libyui
(Ul abstraction layer)

“probe

il

|
L T

There is the core engine and to run scripts written in Y CP (Y aST2's own scripting language), Perl or
(in future releases) other scripting languages.

The engine and scripts together form a'YaST2 Module for the user.

2.2.1. The SCR (System Configuration Repository)

Even though in most scenarios there is only one single machine, it is important to distinguish
between the installation source machine and the installation target machine:

e Theingallation source machine is the machine that holds the installation media - usually CDs or
DVDs - and amini-Linux called "inst-sys" that is copied from one of those installation media to
that machine's RAM disk to have a basic operating system to work with on a "bare metal" ma-
chine (a machine that doesn't have an operating system installed yet). Most of that inst-sys is
read-only, there is only limited disk space for temporary files, and since everything runs from a
RAM disk the writable part of it isvery volatile.

* The installaton target on the other hand is the machine that is to be installed or administered.
That may be the same machine as the installation source machine (in fact, this is very common
for PC installation or administration tasks), but it might as well be two distinct machines - a vir-
tual machine on a mainframe computer or a remote rack-mounted machine without any display
adapter or CD/DVD drives.

All communication with the installation target is handled via the System Configuration Repository
(SCR) to guarantee the network abstraction design goal. This is much easier said than done,
however: YaST2 module developers always have to keep in mind that it is strictly forbidden to ac-
cess system files (or any other system resources, for that matter) directly, even if there may be very

2.2.2. The Ul (User Interface)

convenient CPAN Perl modules to do that. Rather, SCR is to be used instead - aways. Otherwise
everything might run fine if installation source and target are the same machine, but break horribly
if they are not.

SCRinitself is also modularized: All calls are handled by "agents" that each know how to handle a
particular configuration "path” like "/ et c/ f st ab" or "/ et ¢/ passwd". That may be asimple
file, but it may also be a directory hierarchy like "probe" - this particular agent handles all kinds of
hardware probing, from mouse and display adapters to storage device controllers (like SCSI or IDE
controllers), disks attached to each individual controller or partitions on those disks. Paths are de-
noted like ".etc.fstab" for SCR. Y CP even has a special data type "path" for just this case (a specia
kind of string with some special operations).

SCR agents handle no more than three calls:

e SCR:Read()
* SCR:Write()
* SCR::Exectute()

The first argument is always the path to handle, but there may be any number of additional paramet-
ers, depending on the agent.

While Read() and Write() are obvious, Execute() may not be: This is intended for some kinds of
agents that actually run a program on the installation target. In particular, the ".target.bash™ agent
does that - it runs a"bash" shell on the target machine and accepts a shell command as an argument.
Thisisthe tool of choice for tasks such as starting or stopping system services on the target machine
- and again, the distinction between installation source and installaton target machine becomes very
important: Y ou want to start or stop the service on the (possibly remote) target machine, not on the
machine that happens to hold the installation media

SCR agents can easily added when needed. There are frameworks available to write SCR agents in
C++, in Perl, or as Bash shell scripts as well as severa ready-made parsers for different file formats
like the ".ini" file parser that can handle files with "key = value" pairs or the "anyagent" that gener-
alizes that concept even more using regular expressions. Those parsers return Y CP lists and maps
ready for further processing.

Typically, aYaST2 module for a specific installation or administration task includes a set of YCP or
Perl scripts as well as some SCR agents to handle its particular configuration files.

2.2.2. The Ul (User Interface)

Given the wide variety of machines that can possibly be handled with YaST2, it isimportant to keep
the user interface (Ul) abstraction in mind - very much like the SCR, the Ul does not necessarily run
on the ingtall ation target machine. It doesn't even need to run on the same machine as the WFM.

The Ul provides dialogs with "widgets' - user interface elements such as input fields, selection lists
or buttons. It is transparent to the calling application if those widgets are part of a graphical toolkit
such as Qt, or text based (using the NCurses library) or something completely else. An input field
for example only guarantees that the user can enter and edit some value with it. A button only
provides means to notify the application when the user activated it - by mouse click (if the Ul sup-
ports using pointing devices such as amouse), by key press or however else.

The Ul has a small number of built-in functions - for example:
» Ul::OpenDidog() accepts awidget hierarchy as an argument and opens a dialog with those wid-
gets

e Ul::CloseDialog() closes adialog

2.2.3. YaST Core Engine

e Ul::QueryWidget() returns a widget's property such as the current value of an input field or se-
lection box

» Ul::ChangeWidget() changes awidget's property

e Ul::Userlnput() waits until the user has taken some action such as activate a button - after which
the application can call Ul::QueryWidget() for each widget in the dialog to get the current values
the user entered. The application does not have to handle every key pressin each input field dir-
ectly - the widgets are self-sufficient to alarge degree.

There is virtually no low-level control for the widgets - nor is it necessary or even desired to have
that. You don't specify a button's width or height - you specify its label to be "Continue", for ex-
ample, and it will adapt its dimensions accordingly. If desired, more specific layout constraints can
be specified: For example, buttons can be arranged in a row with equal width each. The Ul will res-
ize them as needed, giving them additional margins if necessary.

The existing Uls provide another layer of network abstraction: The graphical Ul uses the Qt toolkit
which is based on the X Window System's Xlib which in turn uses the X protocol (usually) running
on top of TCP/IP. X Terminals can be used as well as a Linux console (that may be the installation
source machine or the installation target machine or another machine connected via the network)
running the X Window System or even X servers running on top of other operating systems.

The NCurses (text based) Ul regquires no more than a shell session - on a text terminal (serial con-
sole or other), on aLinux console, in an X Term session, via ssh or whatever.

Currently, thereis no web Ul, but YaST2's concepts would easily allow for that if it proves useful or
necessary.

2.2.3. YaST Core Engine

The component broker is the central piece of YaST. It acts as a dispatcher for al other components:
When a (YCP, Perl or whatever) script calls a function, the broker determines what component
handles that function call based on the respective namespace identifier. It is transparent to the caller
what programming language a function is written in; the component broker handles that kind of dis-
patching. The caller only needs to know the function name, its namespace and (or course) the re-
quired parameters.

For example, calls like Ul::OpenDialog() go to the Ul (the user interface), SCR::Read() to the SCR
(the system configuration repository). Even scripts can provide namespaces via modules in YCP or
Perl.

All communication between the different parts of YaST core is done via a predefined set of YCP
data types - simple data types like string, integer, boolean etc., but also compound data types like
maps (key / value pairs, aso known as "hashes" in other programming languages) or lists (like ar-
rays or vectors in other programming languages). For complex data structures, maps, lists and
simple data types can be nested to any degree.

2.2.4. External Programs

The core-engine of YaST consists of some binary components (modules) that are interconnected via
YaST-specific protocols. There are clients as well as servers that are responsible for specific tasks
that may have to be accomplished during a YaST-session. According to the well-known client-serv-
er-paradigm often used in software technology, YaST-servers are program modules that passively
await connections from certain clients to process their requests. Clients on the other hand are active
components that send requests to the servers thereby initiating certain actions.

For example the SCR and the Ul act as server components that process client-requests on demand.
An example for a client module is the stdio-component that can be used to connect the YaST-
internal communication with aterminal.

Because this architectural speciality is meant to be used only by the YaST core developers to estab-

2.2.4. External Programs

lish and maintain the low-level machinery we will not go into more detail here. Instead we will fo-
cus on the advocated method of extending YaST at the “open end” by creating YCP-modules.

10

Chapter 3. The YaST Language - YCP

The YaST-language YCP is a scripting language to be interpreted by the YCP-engine (YCP inter-
preter) specially designed for manipulation with a system configuration. Its syntax is very similar to
C programming language. Because YCP can make use of the whole infrastructure that YaST
provides, the actions that can be accomplished with YCP are very powerful.

YCP has the usual features of procedural languages and some more, partially originating from the
functional programming paradigm:

e Control structures like if/then/el se, foreach-loops.

e Compound data types like strings, lists and maps.

* Function definition (procedures)

e Variable scopes

* Name spaces

* Includefiles

* UNIX command execution (viathe YaST infrastructure)

On the following pages we will explore the YCP language definition and find out how to use YCP to
write programs’ that can be executed by YaST.

3.1. The First YCP Program

Probably the best way to get into the matter is by means of a simple example.

3.1.1. YCP Source

The following little program opens a window that displays the string “Hello, World!” and provides a
push button for termination.

Example 3.1. “HelloWorld” in YCP

string message = "Hello, World!";
Ul : : OpenDi al og(
* VBox(

*Label (nessage),
" PushBut t on(" &K")
)

)
Ul :: Userlnput();
U ::C oseDial og();

In the following this code will be explained shortly in aline-by-line manner thereby touching some
topics we will examine in detail later on.

« |
The opening curly opens a so-called block in YCP. Blocks are used to “glue” several YCP-

11

12

3.1.2. The YCP compiler

statements together to form an entity that can be handled just like a single statement.
string nmessage = "Hello, World!'";

In this line we define a variable named “message’ that is of type string. In YCP any variable
definition must imply a value assignment to avoid al errors that might occur due to uninitialized
variables. Here we assign the constant string “Hello, World!”. Furthermore the terminating
semicolon is mandatory in YCP to indicate the end of a statement (just like C).

Ul : : OpenDi al og(

This command opens a dialog on screen. Because we want to display something, the code de-
scribing our dialog has to be sent to the Ul. Thisis being done by the leading name space identi-
fier Ul : : . The (single) parameter that is supplied here determines the content of the dialog.

" VBox (

Thisis a Ul-statement related to the geometry of the dialog to be defined. As the name indicates
it opens a (virtual) vertical box that displays all content in a column-wise manner. (Geometry
management is described in more detail in Section 3.9, “Controlling The User Interface”).

The leading back-quote introduces a YCP-feature that stems from the functional programming
paradigm. In YCP-speak the * VBox() is aterm. In YCP, terms are used as a structured con-
stants and are typically passed to functions provided by YaST infrastructure as parameters as is
done herewith QpenDi al og() .

" Label (message),

Displaying strings in YCP is done by means of Labels. This statement gets one parameter, the
string variable we defined in the beginning. Because it is the first of two parameters passed to
" VBox() thislineis not terminated with a semicolon but with a comma. Asin most program-
ming languages commas are used to separate parametersin YCP.

" PushBut t on(" &K")

This statement displays a labelled push button. Since it is the next element in the enclosing
" VBox() , it is displayed immediately below the preceding label. The & in the label string is a
YaST feature declaring the subsequent character to be a key-shortcut. As aresult the button can
not only be clicked with the mouse but also be activated by typing ALT-O.

) and) ;

The next two lines first close the open * VBox() and then the open OpenDi al og() . Because
" VBox() ispassed as a parameter to OpenDi al og() thereis no need to terminate the state-
ment with a semicolon. CpenDi al og() on the other hand is a statement in the Ul and hence
must be terminated with a semicolon.

U :: Userlnput();

Here we hand over control to the Ul which then awaits some sort of user input. In this case it
simply waits for the push button to be pressed by the user. Consequently our program blocks at
this point until the user really doesit.

Ul ::C oseDial og();

After all the Ul-related action has finished, i.e. when Ul : : User | nput () returns, we want to
remove the dialog we just created. Thisis done here.

}
Indicating the end of the block, the closing curly bracket ends our little YCP-program.

3.1.3. Running YCP

3.1.2. The YCP compiler

Section not written yet...

3.1.3. Running YCP

Now we can start the program using YaST. For this, we will use a script / sbi n/ yast 2. It isan
envelope for easier setup of arunning YaST environment.

So if you are reading this document with a browser, you could copy-and-paste the program listed

above into afile hel | 0. ycp, and then run /sbin/yast2 hello.ycp which should render the follow-
ing “spectacular” result.

Figure 3.1. Output of the“Hello, World!” -program

Hello, Warld!

Starting off with this simple example we will now explore the more subtle details of YCP. Since all
programming is about handling of data there must be away to hold it in variables of different types.
In the next section you will get to know the various data types that YCP knows about.

3.2. YCP Data Types

Just like any other high-level programming language Y CP has typed variables to hold data of differ-
ent kinds:

» Datatypevoid

» Datatype symbol

» Datatype boolean

» Datatypeinteger

» Datatype float

» Datatypestring

» Datatype byteblock
» Datatypelist

» Datatype map
 Datatypeterm

» Datatype path

» Datatype block

» Datatype symbol

« Datatype any

13

3.2.1.

3.2.2.

3.2.3.

3.2.4.

3.2.5.

3.2.2. Data Type symbol

Data Type void (nil)

This is the most simple data type. It has only one possible value: ni | . Declaring variables of this
type doesn't make much sense but it is very useful to declare functions that need not return any use-
ful value. ni | isoften also returned as an error flag if functionsfail in doing their job somehow.

Data Type symbol

A symbol is aliteral constant. It is denoted by a single backquote and a letter or underscore option-
ally followed by further letters, underscores or digits.

Example 3.2. Symbol constants

“literal
“next

Data Type boolean

In contrast to C/C++, a YCP boolean isarea datatype with the dedicated valuest r ue and f al se.

Comparison operations like < or == evaluate to aboolean value. Thei f (. ..) statement expects
a boolean value as the result of the decision clause.

Data Type integer

This is a machine independent signed integer value that is represented internally by a 64 bit value.
The valid range is from - 2263 through 27263- 1. Integer constants are written just as you would
expect. You can write them either decimal or hexadecimal by prefixing them with Ox, or octal by
prefixing them with O (just likein C/C++).

Example 3.3. Integer constants

1

-17049349
0x9fal
OxDEADBEEF
0233

Data Type float

Floating point numbers. Because they are represented via the C datatype doubl e the valid range is
machine dependent. Constants are written just as you would expect. The decimal point is mandatory
only if no exponent follows. Then there must be at least one digit leading the decimal point. The ex-
ponent symbol may be e or E.

Example 3.4. Float constants

1.0
-0.0035
1e30
-0.128e-17

3.2.6. Data Type string

14

3.2.7. Data Type byteblock

Represents a character string of almost arbitrary length (limited only by memory restrictions). String
constants consist of UNICODE characters encoded in UTF8. They are enclosed in double quotes.

The backslash can be used to mark special characters:

Table 3.1. Special charactersin strings

Representation Meaning

\n
Newline (ASCII 10)

\'t Tabulator

\r Carriage Return (ASCII 13)

\'b Backspace

\ f Formfeed

\ abc ASCII character represented by the octal value abc. Note that unlike in C,
there must be exactly 3 octal digits!

\ X The character X itself.

A backslash followed by a newline makes both the backslash and the newline being ignored. Thus
you can split a string constant over multiple linesin the YCP code.

Example 3.5. String constants

“This string ends with a newline character.\n”
“Thisis also anewline: \012”

3.2.7. Data Type byteblock

A byteblock simply is a sequence of zero or more bytes. The ASCII syntax for a byteblock is
#[hexstri ng] . The hexstring is a sequence of hexadecimal values, lower and upper case letters
are both allowed. A byte block consisting of the three bytes 1, 17 and 254 can thus be written as
#[0111 E] .

In most cases, however, you will not write a byteblock constant directly into the YCP code. Y ou can
use the SCR to read and write byteblocks.

Example 3.6. Byteblock constants

]

#42]
#0111fE]
#[03A6f298B5]

3.2.8. Data Type list

A list is afinite sequence of values. These values need not neccessarily have the same data type. List
constants are denoted by square brackets. In contrast to C it is possible to use complex expressions
as list members when defining a list constant. The empty listisdenoted by [] .

Example 3.7. List constants

15

3.2.9. Data Type map

[]

[1,2, true]

[variable, 17 + 38, some_function(x, y)]
["IiSt", nof", "Stri ngS"]

Accessing the list elements is done by means of the index operator asinny_list[1]:"error".
The list elements are numbered starting with 0, so index 1 returns the second element. After the in-
dex operator there must be a colon denoting a following default value that is returned if the list ac-
cess fails somehow. The default value should have the type that is expected for the current list ac-
cess, in this case the string “error”.

Note 1: A list preserves order of its elements when iterating over them.
Note 2: There is aso another method for accessing lists, originating from the early days of YaST.

The command sel ect(nmy list, 1, "error") aso returns the second element of
nmy_|ist.Whilethistill works, it is deprecated by now and may be dropped in the future.

3.2.9. Data Type map

A YCP-map is an associative array. It is a list of key-value-pairs with the keys being non-am-
biguous, i.e. there are no two keys being exactly equal. While you can use values of any type for
keys and values, you should restrict the keys to be of type string because from experience other
types tend to complicate the code. Values of arbitrary type on the other hand make the map a very
flexible data container. Maps are denoted with $[key_0: val ue_0, key_1:value_1,
...].Theempty mapisdenoted by $[] .

Note: A map does not reserve order of its elements when iterating over them.

Example 3.8. Map constants

1
$["/usr": 560, "/home" : 3200]
$["first": true, "2": [true, false], "number" : 8+9]

Accessing the map elements is done by means of the index operator as in
nmy_map["os_type"]:"linux". Thisreturns the value associated with the key " os_t ype".
Aswith lists, a default value must be appended (after a colon) that is returned if the given key does
not exist. Again it should have the type that is expected for the current access, in this case the string
“linux”.

You may have noticed that the syntax for accessing maps kind of resembles that of accessing lists.
Thisis dueto the fact that lists are realized as maps internally with constant keys 0, 1, 2, and so on.

Note: There is also another method for accessing maps, originating from the early days of YaST.
The command | ookup(ny_nmap, "os_type", "linux") aso returnsthe value associated
with the given key. While this still works, it is deprecated by now and may be dropped in the future.

3.2.10. Data Type path

16

A path is something special to YCP and similar to pathsin TCL. It is a sequence of path elements
separated by dots. A path element can contain any characters except \ x00. If it contains something
else than a- zA- Z0- 9_- it must be enclosed in double quotes. The root path, i.e. the root of the
tree is denoted by a single dot. Paths can be used for multiple purposes. One of their main tasks is
the selection of data from complex data structures like the SCR-tree (see Section 5.2, “SCR Tree").

The backslash can be used to mark a special characters:

3.2.11. Data Type term

Table 3.2. Special charactersin paths

Representation Meaning
\'n
Newline (ASCII 10)
\ 't Tabulator
\r Carriage Return (ASCII 13)
\'b Backspace
\ f Formfeed
\ XXX ASCII character represented by the hexadecimal value XX.
\ X The character X itself.

Example 3.9. Path constants

A7

.etc.fstab

"\nHello '\n".World
S\ == "\XFF!
x4l == "A"

3.2.11. Data Type term

A term is something you won't find in C, Perl, Pascal or Lisp but you will find it in functional pro-
gramming languages like Prolog for example. It isalist plus a symbol, with the list written between
normal brackets. Theterm ™ al pha(17, true) denotesasymbol " al pha andthelist|[17,

true] asparametersfor that symbol. Thislooks pretty much like afunction call.

You can aso use the term as a parameter in another function call, for example to specify a user dia-
log.

Example 3.10. Term constants

“like_function_call(17, true)
"HBox(Pushbutton("1d("ok), "OK"), "Textentry("1d('name), "Name"))

3.2.12. Data Type any

In the previous sections you have seen the data types YCP knows about. In most cases you will (and
should) assign a certain data type to every variable you declare. However, there might be cases
when the type of a variable is not really clear at coding time, e.g. (in some rare cases) if you access
the SCR to get some hardware data. While you should try very hard to avoid this situation, there
might be cases where you can't.

To solve this problem, you may assign the type any to your variable which makes it accept assign-

ments of any other valid type. However, because variables of type any are highly deprecated in
YaST by now, this“feature” will eventually be dropped in the near future.

3.3. More YCP types

17

3.3.1. Data Type block

Section not written yet...

3.3.1. Data Type block

Basically ablock is a sequence of YCP statements enclosed in curly brackets. It can be awhole YCP
program as was the case with the outermost block in hello.ycp from Section 3.1.1, “YCP Source’.
What is specia about blocks in YCP is that they represent a value and therefore can be assigned to a
variable. It is sometimes really useful to have those blocks as YCP values because this makes it pos-
sible to use them as parameters to function calls. Of course the syntactical structure of blocks can
become rather complex which leads to a description of the whole language itself. Therefore we put
thisinto a section of its own: Section 3.8, “Y CP Program Structure”.

For now the following examples should suffice.

Example 3.11. Block constants

{ return 17; }
{ integer a=5; returna + 8; }

3.4. YCP Type System

Section not written yet...

3.4.1. Data Type any And Type Checking

18

In Data type any you have seen the data type any. Because the value of type any can not be as-
signed to a variable of any other type. FIXME. So it is importnat to check its type withi s(...)

and then re-assigning it to a variable of the correct type. The following example shows how this
should be done.

Example 3.12. Type checking and data type any

any any_var = 0;
integer int_var = 0;

fl oat float_var = 0.0;
bool ean int_case = false;

any_var = SCR :Read(...);
i{f (is(any_var, integer))

int_var = any_var,
int_case = true;

else if (is(any_var, float))

float _var
int_case

= any_var;
= fal se;

el se

/1l Error...

if (int_case)
/l Use int_var...
el se

{

/1 Use float_var...

3.5. YCP Expression Evaluation

Asthisis very cumbersome, you should try to avoid this oddity in any case. If it isingluctable, do it
as shown above to stay compatible with future YaST behaviour.

3.5. YCP Expression Evaluation

From the interpreters point of view any YCP value is an expression and thus can be evaluated. How
the evaluation is done in a particular case depends on the data type of the expression.

Because the block data type is somewhat special with respect to evaluation it will be explained first.
The other basic data types will follow thereafter.

3.5.1. Evaluation Of Blocks

A YCP block is a sequence of statements enclosed in curly brackets. Upon evaluation (execution),
all the statements in the block are evaluated one by one. Because blocks are also avalid data type in
YCP, they can have a value (see Data type block). If a block contains the special statement r e-
turn(...),thenthereturned value replaces the block upon evaluation.

The following code sample shows a block with some statements.

{

integer n = 1
while (n <= 10)

y2m | est one(" Nunber: %", n);
n=n+1;

}
y2mni | estone(" Returned nunber: %", n)

return n;

It calculates the numbers 1 through 10 and prints these numbers into the log file. The statement
y2m | estone(...) used for thisis explained in YaST2 Logging along with YCP-logging as
such. For now we are interested in the output that is written to the log file. As can be seen below the
loop is executed 10 times and the counter has the value 11 after the loop. Finally the last statement
return(...) determinesthe value of the whole block, inthiscase 11.

...ycp/block_01.ycp: 6 Nunber: 1
...ycp/block_01.ycp: 6 Nunber: 2
...ycp/ bl ock_01.ycp: 6 Nunber: 3
...ycp/block_01.ycp: 6 Nunber: 4
...ycp/block_01.ycp: 6 Nunber: 5
...ycp/block_01.ycp: 6 Nunber: 6
...ycp/ bl ock_01.ycp: 6 Nunber: 7
...ycp/ bl ock_01.ycp: 6 Nunber: 8
...ycp/block_01.ycp: 6 Nunber: 9
...ycp/block_01.ycp: 6 Nunber: 10
..ycp/ bl ock_01.ycp: 10 Returned nunber : 11

3.5.2. Evaluation Of Basic Data Types

The basic YCP data types we got to know in Section 3.2, “YCP Data Types’ are evaluated in a
rather straight forward way as will be shown in the following list.

Evaluation of basic data types

» Smple data types

Most of the YCP data types can't be “evaluated” at all, as they simply evaluate to themselves.
This holds for the simple types voi d, bool ean, i nt eger, fl oat, stri ng, synbol and
pat h.

19

3.6. YCP Operators

list
When evaluating alist, the interpreter evaluates all the list elements thereby forming a new list.

list list_var =[1 + 1, true || false, "foo" + "bar"];

y2m | estone("list_var: %", list_var);

yieldsthe log file entry

...ycp/list_eval.ycp:4 list_var: [2, true, "foobar"]

° n’ap
A map is handled similar to a list. The values (but not the keys) are evaluated to form a new
map.
map map_var = $["one" : “one, ‘two : "one" + "one"];

y2m | estone("map_var: %", map_var);

yieldsthe log file entry

...ycp/ map_eval .ycp: 4 map_var: $["one": one, two:"oneone"]

e term

Upon evaluation, term parameters are evaluated to form a new term.

termtermvar = “val (1 + 1, true || false, "foo" + "bar");

y2m | estone("termvar: %", termvar);

yieldsthe log file entry

...ycp/termeval .ycp:4 termvar: “val (2, true, "foobar")

All the evaluations we have seen above are closely related to operators that may be used within an

expression to act on the variables. The next section will give an overview of the operators that can
be used in YCP.

3.6. YCP Operators

As any other programming language YCP knows alot of operators that can be used to act on data.

3.6.1. Comparison Operators

These are binary operators for comparison of two values. The result is always bool ean.

Operator Datatype Description
== amost all True if operands are equal, oth-
erwise false.

20

3.6.2. Boolean Operators

Operator

Datatype

Description

<

amost al

True if left operand is smaller
than the right one, otherwise
false.

amost all

True if left operand is greater
than the right one, otherwise
false.

amost all

True if left operand is smaller or
equal to the right one, otherwise
false.

amost all

True if left operand is greater or
equal to the right one, otherwise
false.

amost all

True if operands are not equal,
otherwise false.

3.6.2. Boolean Operators

These are logical operators, that works with boolean datatype, two are binary one is unary. The res-

ult is always boolean.

Operator Datatype Description

&& boolean True if both operands are true,
otherwise false (logical and).

Il boolean True if at least one of the oper-
ands is true, otherwise false
(logical or).

! boolean True if the operand if false, oth-
erwise false (logical not).

3.6.3. Bit Operators

These are bit operators that works with integer, two are binary one is unary. The result is always in-

teger.

Operator

Datatype

Description

&

integer

Bits of the result number are
product of the bits of the oper-
ands (bit and).

integer

Bits of the result number are
count of the bits of the operands
(bit or).

integer

Bits of the result number are re-
verted bits of operand (bit not).

<<

integer

Bits of the result number are left
shifted bits of the operands (bit
shift left).

>>

integer

Bits of the result number are
right shifted bits of the operands
(bit shift right).

21

3.6.5. Triple Operator

3.6.4. Math Operators

There math operators works with numeric data types (integer and float) and also with string. All are
binary (except unary minus).

Operator Datatype Description

+ integer, float, string The result is sum of the num-
bers or concatenation of the
strings.

- integer, float The result is difference of the
numbers.

* integer, float The result is product of the
numbers.

/ integer, float The result is quotient of the
numbers (number class is pre-
served, thus quotient of integers
produce integer, etc).

% integer The result is modulo.

unary - integer, float The result is negative number.

3.6.5. Triple Operator

This is the operator known from C language (condition ? expression : expression). The first oper-
and is expression that can evaluate to boolean, types of second and third operands are code depend-
ent. The result of the triple operator expression is the second operand in the case the first operand
(condition) evaluates to true, the third one otherwise.

Code Result Comment
(3>2) ?true: false true The expression (3 > 2) evaluates
to true, theresult istrue
contains ([1, 2, 3], 5) ? "yes' :|"no" The expression contains ([1, 2,
"no" 3], 5) evaluates to false, the res-
ultis"no"
(size([)>0)?1:-1 -1 The expression size ([]) > 0
evauates to false, the result is -
1
Note
i
Using brackets makes code cleaner, but is not necessary (according to operators pre-
cedence).
Note

With the introduction of the index operator (a = mapvar["key"]:default), the sequence
"]:" became a lexical token usable only for indexing, so watch out when using the
triple operator with lists and maps. Use parentheses or white space.

3.6.6. Operators Precedence

22

The table of operators precedence (from lowest to highest).

3.6.7. The bracket operator

Direction Operators
right =

left ?

left Il

left &&

left ==I=

left <<=>>=
left +-

left * | %

|eft << >>
left |

left &

prefix I~-

3.6.7. The bracket operator
3.6.7.1. Introduction

The bracket operator isthe use of '[' and ']' like accessing arraysin C.
In YCP, this operator is used to ease handling with (possibly nested) lists and maps.

The bracket operator can be applied to any list or map variable and should be used in favour of
(deeply) nested lookup() and select() cascades.

3.6.7.2. Access variant

The access variant of the bracket operator is used for accessing elements of alist or amap. It effect-
ively replacessel ect for listsand | ookup for maps.

3.6.7.2.1. Accessing lists
General syntax:
for simplelists:
<list-var>[<index>] : <default-value>
for nested lists:
<list-var>[<index>, <index> <, ...>] : <default-value>
index must be an integer and counts from 0 up to the number of elements-1.

It will return the default-value if you try to access an out-of-bounds element.

Note
¥
Note that there must be no space between the closing bracket and the colon.
Examples:
t
list I =11, 2, 3];

23

3.6.7. The bracket operator

integer three = 1[2]:0; /Il ==3

integer zero = 1[42]:0; /] default val ue
list Il =1[[1,2], [3,4], [5,6]];

return (I1[1,0]:0 == three); // returns true

3.6.7.2.2. Accessing maps
General syntax:
for simple maps:
<map-var>[<key>] : <default-value>
for nested lists:
<map-var>[<key>, <key> <, ...>] : <default-value>
key must have an allowed type for maps, integer, string, or symbol.

It will return default-value if you try to access an non existing key.

- Note

Note that there must be no space between the closing bracket and the colon.

Examples:

map m= $["a":1, "b":2, "c":3];

integer three = nf"c"]:0; /Il ==3
integer zero = n["notthere"]:0; // default val ue
map mm = $["a":$[1:2], "b":$[3:4], "c":$[5:6]];

return (m{"b",0]:0 == three); // returns true

3.6.7.2.3. Mixed mapl/list access

Since the bracket operator applies to list and maps, you can use it to access nested lists and maps.

But be careful not to mix up the index/key types.

Examples:
{
map map_of lists = $["a":[1, 2, 3] "b":[4,5,6], "c":[7,8,9]];
i nt eger three-rrap of Ilsts[] 0; /1 == 3
list list_of_maps = [$[1: 2] $[3 4] $[5:6]];
return (I7st_of _maps[1,0]: /1l returns true

3.6.7.3. Assign variant

The bracket operator can also be used on the left side of an assignment (Ivalue).

This changes the list or map element in place (!!) and must be used with care.

If the map or list element does not exidt, it will be created. The bracket operator can therefore re-

place add and change.

24

3.7. Data Type locale

Creating anew list element will extend the size of the list. Holes will befilled with ni | . See the ex-
amples below.

If used as an lvalue, the default value is not allowed.

Examples:

list | =[1,2 3];

/| change the second el enent
I[1] = 25 [/ 1 =1[1,25,3] now !

/1 change the "c" el enent

map m= $["a":1, "b":2, "c":3];

ni"c"] = 42; /[l m=$["a":1, "b":2, "c":42] now

/] extend the list to 7 elenents (0-6)
I[6] = 6; /1 | =11,25,3,nil,nil,nil,6] now!

/! add a new el enent to m
nf"zz"] = 13;
return (nmm; /1 $["a":1, "b":2, "c":42, "zz":13]

3.7. Data Type locale

A string that is localized by YaST2 via the gettext mechanism (see gettext and ngettext in libc for
more informations). Basically a string to be trandated via gettext must be enclosed in _(...)
which causes gettext to look up the translated string. It is even possible to distinguish singular and
plural verbalizations depending on a parameter that denotes the actual number of something.

For a simple number-independent string you write _(some_stri ng_const ant) which causes
its translation.

If the string to be translated needs to be different depending on the multiplicity of something then
you write _(singul ar_string_constantl, plural_string_constant?2, actu-
al _nunber) . If act ual _nunber equals 1 then the trandation of the first string is used. Other-
wise the tranglation of the second string is used.

Note 1: There are languages that distinguish more than the two cases singular and plural. Principally
gettext can handle even those cases as it allows more than two strings for selection, but that is bey-
ond the scope of this document (see the gettext documentation).

Note 2: It is not possible to put something other than string constants between the brackets.

Example 3.13. L ocale constants

_("Everybody likes Linux!")
_("Anerror has occured.", "Some errors have occured"”, error_count)

3.8. YCP Program Structure

Now that we have learned how data can be stored and evaluated in YCP, we will take a look at the
surrounding code structure that can be realized. Code structure is created by means of blocks and
statements.

3.8.1. Comments

Despite not being “really” statements, comments do (and should) belong to the overall structure of a

25

3.8.2. Variable Declaration

YCP program. There are two kinds of comments:

» Sngle-line comments

Single-line comments may start at any position on the line and reach up to the end of this line.
They areintroduced with “//”.

e Multi-line comments

Multi-line comments may also start at any position on the line but they may end on another line
below the starting line. Consequently there must be astart tag (“/ *”) and anend tag (“*/ ") asis
shown below.

Example 3.14. Comments

/1 A single-line coment ends at the end of the line.

/*
Mil ti-1ine comments

may span several |ines.
*/

y2m | estone("This programruns w thout error");

3.8.2. Variable Declaration

Synopsis: data_type variable_name = initial_value;

Variable declarations in YCP are simliar to C. Before you can use a variable, you must declare it.
With the declaration you appoint the new variable to be of a certain data_type which means you can
assign only values of that specific type. To avoid any errors caused by unintialized variables, a de-
claration must imply a suitable value assignment.

Note: A variable declaration may occur at several points in the code which determines its validity
(accessahility) in certain program regions (see Section 3.8.15, “Variable Scopes and blocks”).

Example 3.15. Variable Declaration

integer int_num

fl oat float _num
string Ti pOf TheDay
integer sum

42;

42.0;

"Linux is best!";
4 * (num+ 8);

3.8.3. Variable Assignment

26

Synopsis: variable_name = value;

An assignment statement is almost the same as a declaration statement. Just |eave out the declara-
tion. It isan error to assign avalue to a variable that has not already been declared or to a variable of
different data type.

Example 3.16. Variable Assignment

3.8.4. Conditional Branch

i nteger nunber = 0;

nunber = nunber + 1;
nunber = 2 * number;) .)
nunber = "Don't assign me to integers!"”; /1 This will cause an error!!!

3.8.4. Conditional Branch
Synopsis: if (condition) then_part [else else part]
Depending on condition only one of the code branches then part and else part is executed. The
else part is optional and may be omitted. Both then part and else part may either be single state-
ments or a sequence of statements enclosed in curly brackets, i.e. ablock. The then part is executed

if and only if condition evaluatestot r ue, the else part otherwise. It is an error if condition evalu-
ates to something other thant r ue or f al se.

Example 3.17. Conditional branch

integer a = 10;

if (a>10)
y2m | estone("a is greater than 10");
el se

/1 Miltiple statenents require a bl ock. ..

y2m l estone("a is less than or equal to 10");
a=a* 10;

3.8.5. while() Loop

Synopsis: while (condition) loop_body

The while() loop executes the attached loop_body again and again as long as condition evaluates to
t r ue. Theloop_body may be either asingle statement or ablock of statements.

Because condition is checked at the top of loop_body, it may not be executed at all if condition is
f al se right from start.

Example 3.18. while() L oop

integer a = 0;

while (a < 10) a = a + 1;

while (a >= 0)
y2m | estone("Current a: %W", a);
a=a- 1;

}
}

3.8.6. do..while() Loop

Synopsis: do loop_body while (condition);

27

3.8.7. repeat..until() Loop

The do...while() loop executes the attached loop_body again and again as long as condition evalu-
atestot r ue. Theloop body may be either asingle statement or ablock of statements.

Because condition is checked at the bottom of loop_body, it is executed at least once, even if condi-
tionisf al se right from start.

Example 3.19. do...while() L oop

integer a = 0;
do
y2nmi | estone("Current a: %", a);
1:

a=a+1;
} while (a <= 10);

3.8.7. repeat..until() Loop

Synopsis: repeat loop_body until (condition);

Therepeat...until() loop executes the attached loop_body again and again as long as condition eval-
uatestof al se. Theloop_body may be either asingle statement or a block of statements.

Because condition is checked at the bottom of loop_body, it is executed at least once, even if condi-
tionist r ue right from start.

repeat...until() is similar to do...while() except that condition islogicaly inverted. The example be-
low has been converted from the do...while() example above.

Example 3.20. repeat...until() L oop

integer a = 0;
repeat
y2nm | estone("Current a: %", a);

a=a+1,
} until (a > 10);

3.8.8. break Statement

28

Synopsis: break;
The break statement is used within loops to exit immediately. The execution is continued at the first
statement after the loop.

Example 3.21. break statement

integer a = 0;

repeat

y2m | estone("Current a: %W", a);

a=a+ 1;

if (a ==7) break; /Il Exit the loop here, if a equals 7.
} until (a > 10); /1 Value 10 will never be reached.

3.8.9. continue Statement

y2mi |l estone("Final a: %", a); /1 This prints 7.

3.8.9. continue Statement
Synopsis. continue;

The continue statement is used within loops to abandon the current loop cycle immediately. In con-
trast to break it doesnt exit the loop but jumps to the conditional clause that controls the loop. So
for awhile() loop, it jumps to the beginning of the loop and checks the condition. For a do...while()
loop or repeat...until() loop, it jumps to the end of the loop end checks the condition.

Example 3.22. continue statement

integer a = 0;
while (a < 10)
{ + 1;

a
(a %2 == 1) continue; /Il %is the nodul o operator.

a =
if
y2nil estone("This is an even number: %", a);

}
}

3.8.10. return Statement
Synopsis: return [return_valuel];

The return statement immediately |eaves the current function or a current toplevel block (that con-
tains it) and optionally assigns a return_value to this block. If blocks are nested, i.e. if the current
block is contained in another block, the return statement leaves all nested blocks and defines the
value of the outermost block.

However, if ablock is used in an expression other than a block, and that expression is contained in
an outer block, the return statement of the inner block won't leave the outer block but define the
value of the inner block. This behaviour is a as one would expect. For example in the iteration built-
insin Section 3.8.16, “Applying Expressions To Lists And Maps’,

Example 3.23. return statement

/1 This block evaluates to 42.

return 42;
y2mi | estone("This command wi ||l never be executed");

/1 This block evaluates to 18
while (true)

return 18;

/1 This program eval uates to 3:

integer a =1 + { return 2; };
return a;

29

3.8.12. Function declaration

3.8.11. Function definition

Synopsis: data_type function_name ([typed parameters]) function_body

A function definition creates a new function in the current namespace named function_name with a
parameter list typed parameters that has function_body attached for evaluation. The function_body
must return a value of type data_type and the arguments passed upon function call must match the
type definitionsin typed_parameters.

Example 3.24. Function definition

voi d not hi ng()

y2mi | est one("doi ng not hi ng, returning nothing");

integer half(integer value)

return value / 2;

/1 This renders: ...nothing: nil - half: 21...
y2m | estone("nothing: %4 - half: 9", nothing(), half(42));

3.8.12. Function declaration

Synopsis: data_type function_name ([typed parameters]);

A function declaration alows you to declare only a header of a function without its body. It's main
purpose is for indirect recursion etc. Y ou have to provide a function definition with exactly the same
arguments later in the same file. A new function will be declared in the current namespace named
function_name with a parameter list typed parameters.

Example 3.25. Function declaration

voi d not hing();
integer half(integer value)

return value / 2;

/1 This renders: ...nothing: nil - half: 21...
y2mi |l estone("nothing: %4 - half: 9", nothing(), half(42));
voi d not hi ng()

y2m | est one("doi ng not hing, returning nothing");

3.8.13. include Statement
Synopsis: include " included file";

The include statement allows you to insert contents of a file at the given place in the current file. If
the current file is amodule, the contents of the included file will become a part of the module.

Thisisuseful for dividing alarge file into number of pieces. However, if afileisincluded more than
oncein asingle block, the 2nd, 3rd etc. include statements are ignored.

30

3.8.14. import Statement

The included file can be a relative or an absolute file name. Relative names are looked up with /
usr/ share/ YaST2/i ncl ude asabase.

Example 3.26. Include afile

/'l this will include /usr/share/YaST2/i ncl ude/program definitions.ycp

#i ncl ude "progranidefinitions.ycp";

3.8.14. import Statement
Synopsis: import " name space” ;

Not written yet...

3.8.15. Variable Scopes and blocks

In contrast to many other programming languages, YCP variables can be defined at (almost) any
point in the code, namely between other statements. Given that, there must be some rules regarding
the creation, destruction and validity of variables. Generaly variables are valid (accessible) within
the block they are declared in. This also covers nested blocks that may exist in this current block.
The valid program region for avariableis called a scope.

Example 3.27. Variable scopes and blocks

/1 Declared in the outer bl ock
integer outer = 42;

{
/1 Declared in the inner block
integer inner = 84;

/1 This is OK

/1 Log: ...IN inner: 84 - outer: 42

/1

y2m |l estone("IN: inner: % - outer: 9", inner, outer);

}
/1 This yields an error because "inner" is not defined any nore.
/1

y2m | estone("QUT: inner: % - outer: 9", inner, outer);

3.8.16. Applying Expressions To Lists And Maps

Additionally to the structural language elements described so far, there are special commands that
apply tol i st s and maps. What is special about these commands is that they apply an expression
to the single elements of alist or map. Thisis done in a functional manner, i.e. the expression to be
applied is passed as a parameter. Generally this executes faster than a procedural loop because the
internal functionality isrealized in avery effective way.

Furthermore some of these commands create lists from maps, maps from maps, maps from lists etc.,

so that they can be used to avoid the cumbersome assembling of these compound data types in a
procedural loop.

3.8.16.1. foreach() Statement

Synopsis (list): any foreach(type variable, list<type>, (expression));

31

3.8.16. Applying Expressions To Lists
And Maps

Synopsis (map): any foreach(type key variable key, type value variable value, map<type key,
type value>, (expression));

This statement is a means to process the content of list or map in a sequential manner. It establishes
an implicit loop over all entries of the list or map thereby executing the given expression with the
respective entries. With lists the variable is a placeholder for the current entry. With maps, vari-
able key and variable value are substituted for the respective key-value-pair.

Note 1. FIXME: Typing

Note 2: The return value of the last execution of expression determines the value of the whole
foreach() statement.

Example 3.28. foreach() L oop

/] This yields 3
foreach(integer value, [1,2,3], { return value; });

/1 This yields 9
foreach(integer key, integer value, $[1:1,2:4,3:9],
{ y2nmilestone("value: %", value); return value; });

3.8.16.2. listmap() Statement

Synopsis: map<typel, type2> listmap(type3 variable, list<type3>, (expression returning
map<typel, type2>));

This statement is a means to process the content of list in a sequential manner. It establishes an im-
plicit loop over al entriesin list thereby executing the given expression with the respective entry.
During execution variable is a placeholder for the current entry. For each element in list the expres-
sion is evaluated in a new context. The result of each evaluation MUST be a map with a single pair
of key-value. All the returned key-value-pairs are assembled to form the new map that is returned.

Note: FIXME: Typing, break, continue

Example 3.29. listmap() statement

H This results in $[1:"xy", 2:"xy", 3:"xy"]
map<i nteger, string> ml = listmap(integer s, [1,2,3], ($[s: "xy"]));

[l This results in $[11:2, 12:4, 13:6]
I

map<i nteger, integer> n2 = |listmap(integer s, [1,2,3],
{ integer a = s+10;
integer b = s*2;
list ret = [a,b];
return(ret); });

y2mil estone("map 1: %4 - map 2: ®", nl, nR);

3.8.16.3. maplist() Statement

32

Synopsis (map): | i st <t ypel> maplist(type2 key, type3 value, map<type2, type3>, (expression
returning typel));

Synopsis (list): | i st <t ypel> maplist(type2 variable, list<type2>, (expression returning typel)

3.9. Controlling The User Interface

This statement is a means to process the content of map or list in a sequential manner. It establishes
an implicit loop over al entries in map or list thereby executing the given expression with the re-
spective entries. With lists the variable is a placeholder for the current entry. With maps, key and
value are substituted for the respective key-value-pair. For each element the expression is evaluated
in anew context. All return values are assembled to form the new list that is returned.

Note: FIXME: Typing, break, continue

Example 3.30. maplist() statement

// This results in [2, 4, 6]
list<integer> |1 = maplist(integer s, [1,2,3], (s*2));

/1 This results in [2, 6, 12]
list<integer> |2 = maplist(integer k, integer v, $[1:2, 2:3, 3:4], (k*v));

1=

y2m |l estone("list 1: %4 - list 2: 9®R", 11, 12);

3.8.16.4. mapmap() Statement

Synopsis. map<typel, type2> mapmap(type3 key, typed value, map<type3, typed>,
(expression returning map<typel, type2>));

This statement is a means to process the content of map in a sequential manner. It establishes an im-
plicit loop over al entries in map thereby executing the given expression with key and value substi-
tuted for the respective key-value-pair. For each map element the expression is evaluated in a new
context. The result of each evaluation MUST be a map with a single pair of key-value. All the re-
turned key-value-pairs are assembled to form the new map that is returned.

Example 3.31. mapmap() statement

[l This results in $[11:"ax", 12:"bx"]
11
map<i nt eger, string> m = mapnep(i netger k, string v, $[1:"a", 2:"b"], ([k+10, v+"x"]));

y2ni |l estone("map: %A", m;

3.9. Controlling The User Interface

In the previous sections we have already seen some YCP code that dealt with the creation and hand-
ling of onscreen dialogs. These examples were rather simple to show the basic strategy of creating
dialogs. Of course designing “real” dialogs that do useful thingsis is bit more complicated and re-
quires arather good knowledge of the instuments provided by the Ul.

Because the Ul has been designed to be most flexible, the possibilities for creating and managing
dialogs are quite versatile. Consequently the instruments for doing this are rather diverse. In fact the
Ul extends the basic YCP language to a large extent, thereby providing the meansto create and man-
age onscreen dialogs.

For more information about the User Interface, handling events see the Layout HOWTO.

3.10. The YaST Wizard

In the previous section the basic mechanisms suitable for managing onscreen dialogs were presen-

33

3.10. The YaST Wizard

ted. However, creating dialogs for each and every application from scratch would be cumbersome
and moreover is unnecessary. For example the well-known layout that is presented with nearly
every YaST dialog during installation was not programmed anew for each dialog. Rather it is kind
of imported from a special YCP module, the Wizard that provides al the functionality necessary to
create uniform dialogs.

Furthermore, as time went by, during the development of the YaST installer, the devel opers encoun-
terd situations where the same (or similar) tasks ofttimes had to be accomplished at different loca-
tions in the overal program flow. For example opening a popup to ask the user a question with the
predefined buttons “Yes’ and “No” is a procedure used very often.

This led to the development of predefined dialog elements that can (and should) be included in the
current YCP source. Displaying the Y es-No-popup from the example above is then reduced to call-
ing a function with respective parameters. Aside from avoiding the need to redevelop such things
again and again, another benefit is the ever same visua appearance that adds up to the well-known
YaST look-and-feel. Meanwhile there are also many functions that are not Ul-related but nonethe-
less very useful.

The omnium gatherum of all these elements has been collected to form the so-called “YaST Wiz-
ard”. In short the YaST Wizard consists of one YCP module that provides the layout framework
used in the installation dialogs and some additional YCP modules that provide access to several
common dialog e ements needed rather often. Many “generic” functions are at hand as well.

The following two sections cover these topics mostly by means of references to the YaST de-
vel opers documentation.

Chapter 4, Running y2base
Stand-Alone

In the previous section you got to know how to do a YaST program. Well, normally Y CP-scripts are
executed involving the whole YaST-machinery, e.g. during installation, which requires correct em-
bedding of the script into the surrounding YCP environment. Fortunately there is a way to let run
YCP-scriptsisolated, i.e. stand-alone.

To do so we make use of the architectural separation of components featured by YaST. The
“command line version” of YaST is caled y2base and can usualy be found in /
usr/1ib/YaST2/ bi n. You could set the PATH to include this location to avoid typing in the full
path every time.

$> y2base -h

Usage: y2base [LogOpts] Cient [CientOpts] Server [Generic ServerOpts] [Specific ServerOpts]
LogQ)t ions are:
| --logfile LogFile : Set logfile
ai entQ)tl ons are:
: Get options as one YCPList fromstdin

f Fi | eNane : Get YCPVal ue(s) fromfile
' (any YCPVal ue)’ : Paraneter _IS a YCPVal ue
Generic ServerOptions are:
p Fil eNanme : Evaluate YCPVal ue(s) fromfile (prel oad)
' (any YCpPval ue)' : Paraneter _IS_a YCPValue to be eval uated

Specific ServerOptions are any options passed on uneval uat ed.

Exanpl es:
y2base installation qt
Start binary y2base with intallation.ycp as client and gt as server
y2base installation '("test")' qt
Provi de YCPValue '"test"' as paraneter for client installation
y2base installation qt -geonetry 800x600
Provi de geonetry information as specific server options

This help page, showing the possible options in a call of y2base, is rather self-explaining. For the
moment the interesting parameters are Client and Server. In Section 2.2.4, “External Programs’ we
learned that YaST consists of several modules, some of them being client-components and some
others being server-components. By invoking YaST in the way displayed above we can connect any
client-component with any server-component.

Because a YCP-program (also called YCP-module) can act as a client-component, it is possible to
connect it with a server-component suitable of executing it. Since our “Hello, World!”-program dis-
plays something on screen, we need to use the Ul as server-component in this case. As already said
the Ul is able to use a text-based console environment as well as a graphical X11 environment
which leads to the following two methods of running a YCP-script.
« y2basefileycp qt

Thiswill excutefi | e. ycp inthe graphical Qt-Ul.

» y2basefileycp ncurses

Thiswill excutefi | e. ycp inthetext-based NCurses-Ul.

35

36

Chapter 5. SCR Detalls

In the intoductional chapter we have already heard something about accessing the system with SCR.
Because manipulating the system at the lowest layer is al YaST is about, we now want to take a
closer look at thistopic.

Basically the SCR creates a consistent view of the system hardware and its configuration files.
There are many dependencies between the different entities among those data and these dependen-
cies have to be taken into consideration when manipulating them. For this being possible in a con-
venient way for the higher-level modules there must be an easy and consistent accessing method.
This method is provided by the SCR asit presents kind of an abstraction of the various types of data
to be handled.

Now the data “landscape” that must be covered here is rather heterogeneous. Hardware data and
configuration data, both of most multifaceted type can hardly be handled by one single monoalithic
program. Therefore the SCR consists of a “head” that is accompanied by various helper programs,
the so-called agents, each of them being specialized on a specific task.

5.1. SCR Agents

For each category of system data there is a corresponding SCR-agent. Their job is to map the real
system data to YCP-data structures so that YCP-modules can access them in a convenient way. In
fact the SCR-agents provide the YCP data structures. They come into existence with the presence of
an SCR-agent that provides them. Otherwise they wouldn't be there.

For example there is an agent that reads and writes the / et ¢/ sysconfi g files. The YCP-
representation of asysconf i g-variable is a single YCP-string. When reading, the agent reads the
variable in the corresponding file and creates a YCP-string from it. When writing, the agent gets the
new value as YCP-string and changes the variable in the corresponding file accordingly.

It must be said here, that the set of agents may change over time. New agents may be created in the
future and other ones might be abandoned if their functionality is obsolete or taken over by another
agent. Generally this is no problem because for module development it is not (and should not be)
necessary to know exactly which agent does what. As aready said, the SCR provides an abstraction
of the data to be handled and this abstraction comes into being in form of atree, the SCR-tree.

5.2. SCR Tree

As a computer's hardware and software configuration is quite complex, the SCR organizes all data
in form of atree. It resembles very much a filesystem with its folders, sub-folders and files whereby
the tree structure reflects the thematical separation of the various configuration categories.

The SCR-tree consists of two different kinds of nodes:

Table5.1. SCR Node Types

Data nodes represent single pieces of data, for exampleasysconfi g-entry
Data nodes or amountpoint of afilesystemin/ et c/ f st ab. They are the leaves of the
tree and stand for actual datato be handled.

Map nodes allow for navigation to the leaves just like the path componentsin
Map nodes the directory structure of afile system. Thisway map nodes are used to struc-
ture the data in a suitable manner.

The names of the nodes in the SCR-tree can be concatenated resulting in the creation of an SCR-
path. An SCR-path is a description were to find a node in the SCR-tree. It is a sequence of path
components each of them being a string. As we have seen in the section Data type path YCP-paths
are prepended by dots (.) which act as separators in compound paths. So . f 0o. bar isavalid YCP-

37

5.3. Accessing SCR

path. If bar isan SCR data node, then SCR: : Read(. f 00. bar) would render some data. If bar
isamap node, then SCR: : Di r (. f 00. bar) would reveal the immediate sub-nodes in the SCR-
tree,eg.["big", "brown", "fox"].Thesingledot (.) isalso valid and denotes the root of
the whole SCR-tree. Consequently SCR: : Di r (.) will return alist of all the top-nodes in the SCR-
tree.

In the figure below we see a (very small) cut-out of the SCR-tree that is related to hardware-specific
information.

Figure5.1. SCR Hierarchy Tree

Root of SCR-Tree
Path: <.>

\ |
Mail Config Hardware Access GRUB Bootloader Config
Path: <.mail> Path: <.probe> Path: <.grub>

... other sub-trees other sub-trees ...

\ \
SMP Support Boot Architecture APM Support
Path: <.probe.has_smp> Path: <.probe.boot_arch> Path: <.probe.has_apm>

SMP Support Boot Architecture APM Support
Data: (false) Data: ("grub") Data: (true)

The light grey nodes are SCR-map-nodes denoting the path to the data. They can be used with
SCR :Dir(...) tofind out what is below. So in the figure above SCR: : Di r (. pr obe) would
returnalistas[... "has_snmp", "boot _arch", "has_apnt...].

The dark grey nodes are SCR-data-nodes that stand for the actual data. What can be done with them
depends on the actual node (reading, writing, executing), but usually SCR: : Read(. ..) is pos
sible. Asis shown above SCR: : Read(. pr obe. boot _ar ch) would return” gr ub™ .

5.3. Accessing SCR

38

Now that we know how the SCR-landscape can be navigated we will take a look at how the data
that is dug in there can be accessed. The accessing methods already implied above shall now be
defined more precisely.

There are four accessing methods.

e Reading

We spesk of reading, when the agent reads some configuration file or scans the system hardware
and produces a Y CP data structure representing this information.

5.4. Using SCR From Within YCP

e Writing

We speak of writing, when the agent gets some Y CP data structure and creates or modifies some
system config file according to these data.

e Executing

We speak of executing, when the agent gets some Y CP data that can be interpreted as instruction
and executesit. Usually thisis being done by means of another program, e.g. the bash.

* Dir

Comparared to the other accessing methods listed above, the Dir-command is somewhat special.
It takes as argument an SCR-path that points to a specific node in the SCR-tree. It returns a list
of al the sub-paths that are immediately below this node. This way it works just like a dir-
command in afile system. For example if you apply this to the root of the SCR-tree (.), the an-
swer would tl)e a list with all the top nodes known by the SCR , eg. ["audi 0", ... ,
"yast2"].

Asarule all SCR-agents implement some of the four accessing methods listed above. However de-
pending on the task the agent was made for, not all of them may be provided.
For convenient use from YCP the accessing methods are realized by means of an API, i.e. a defined

set of YCP-functions that are understood. Y ou can call these functions from YCP if you prepend the
commands with the name space identifier SCR: : which causes redirection to the SCR.

Table5.2. The SCR-commands

Function What it does
Reads the data represented by the node at
Read(path p) -> any path p. The value returned can be any YCP

datatype but it is always one single value.

Writes the value v to the node at path p.
The boolean return valueist r ue on suc-
cess. On error thereturn valueisf al se
Wite(path p, any v) -> bool ean and alog entry is generated in the log file.
Reasons for errors can be a mistyped value
v or some problem with the periphery that
lies behind the data-node.

This command is mostly used with the
syst em agent (see Section 5.6, “Useful
Execut e(path p) -> bool ean SCR Agents’). Usually the return value in-
dicates success or failure of the executed
command.

Returns alist of al subtree nodesimmedi-
ately below the node p. For each such node
the list contains a string denoting its name.
If p does not point to amap node, i.e. the
last path component is aleaf, the command
will return an empty list or ni | .

Dir(path p) -> list(string)

5.4. Using SCR From Within YCP

FIXME: To be done... (Examples?)

1 Unfortunately not all SCR-agents do support this command properly. There may be agents that wrongly return an empty list
or even ni | when queried thisway.

39

5.6. Useful SCR Agents

5.5. Using SCR From The Command Line

In the last section we saw some examples of how the SCR can be used from YCP. However if you
only want to test or explore different SCR-paths, writing a YCP-script for every access can be cum-
bersome. Fortunately the SCR-component can be run individually on the command line of atermin-
al using a method very similar to the one we saw in Chapter 4, Running y2base Stand-Alone.

In contrast to the method demonstrated there, this time we don't feed a YCP-script into YaST. In-
stead we make another use of the architectural separation of components featured by YaST in that
we connect the so-called stdio-component with the SCR-component. By doing so we can feed
everything we type on the command line into the SCR.

However, because of the “raw” nature of the YaST-internal communication paths, this method is
not very comfortable. You can't correct typos with Backspace or Del here (the SCR is not meant to
be operated in this way). By doing so we kind of “simulate” YaST-internal communication which
normally forecloses any misspelling.

Furthermore, if you play around with the SCR in this manner you will be able to initiate privileged
actions only if you are running the commands under the root-account.

e Caution

If you run “manua” SCR-commands under the root-account, the SCR will
“gracefully” fulfill al your wishes. So be careful with Write and Execute!!!

Now operating the SCR this way can be shown best with some examples.

Example 5.1. Operating the SCR from the command line

%F] /usr/lib/YaST2/bi n/y2base stdio scr

Read(. pr obe. boot _ar ch)

("grub"

Read(. probe. versi on)

("Cct 7 2002, 15:05:08")

Read(. probe. has_snmp)

(fal se)

Read(. probe. has_apm

(true)

(SCRI) Read(. pr obe. boot _ar ch)
ni

As is shown above, the command y2base stdio scr starts YaST in a specific way. It connects the
YaST client-component stdio with the server-component scr. After that the SCR is running and
awaits any input on stdio which in this case is the console. To explore the content of the SCR-tree
you can now enter any SCR-commands just as you would do in YCP. The only difference is the abs-
cence of the SCR: : name space identifier which must not be given here as can be seen in the last
line.

5.6. Useful SCR Agents

40

The SCR-world knows many agents for all sorts of tasks. Unfortunately this matter is subject to a
rather high change service and not (yet) well documented. Therefore it is not easily possible to ex-
plain the details in a manner of “Which agent provides which paths for what reason?’. As a result
only the most helpful agents are mentioned here along with references to the respective developers
documentation.

Please note that even the devel opers documentation might be outdated to some extent. Consequently
the most reliable source of information are the “real” filesbelow / usr/ shar e/ YaST2/ .

5.6. Useful SCR Agents

System Agent

This agent realizes access to the target system during installation.
lusr/share/doc/packages/yast2-core/agent-system/ag_system-builtins.html
[instdoc_subset/yast2-core/agent-system/ag_system-builtins.html] /
usr/share/doc/packages/yast2-core/agent-system/ag_system-builtins.html

Background Agent

This agent runs shell commands in the background.
/usr/share/doc/packages/yast2-core/agents-perl/ag_background.html
[instdoc_subset/yast2-core/agents-perl/ag_background.htmi] /
usr/share/doc/packages/yast2-core/agents-perl/ag_background.html

Hardware Probe Agent

The agent being responsible for hardware probing.
{usr/share/doc/packages/yast2-core/agent-probe/hwprobe.html
[instdoc_subset/yast2-core/agent-probe/hwprobe.html] /
usr/share/doc/packages/yast2-core/agent-probe/hwprobe.html

Any-Agent

This agent handles the access to configuration files of (almost) arbitrary syntax. The syntax to be
understood must be specified in a configuration file.

{usr/share/doc/packages/yast2-core/agent-any/anyagent.html
[instdoc_subset/yast2-core/agent-any/anyagent.html] /
usr/share/doc/packages/yast2-core/agent-any/anyagent.html

Ini-Agent

The Ini-agent is suitable for accessing configuration files with the well-known ini-file syntax.
{usr/share/doc/packages/yast2-core/agent-ini/ini.html
[instdoc_subset/yast2-core/agent-ini/ini.html] /
usr/share/doc/packages/yast2-core/agent-ini/ini.html

Modules Agent

This agent isthe interface to the/ et ¢/ nodul es. conf file.
{usr/share/doc/packages/yast2-core/agent-modul esymodul es.html
[instdoc_subset/yast2-core/agent-modul esymodul es.html] /
usr/share/doc/packages/yast2-core/agent-modul es/modul es.html

Perl Agent

Thisagent isameansto call Perl scripts from within YCP.
lusr/share/doc/packages/yast2-core/agents-perl/ycp-pm.html

[instdoc_subset/yast2-core/agents-perl/ycp-pm.htmi] /
usr/share/doc/packages/yast2-core/agents-perl/ycp-pm.html

4

instdoc_subset/yast2-core/agent-system/ag_system-builtins.html
/usr/share/doc/packages/yast2-core/agent-system/ag_system-builtins.html
/usr/share/doc/packages/yast2-core/agent-system/ag_system-builtins.html
instdoc_subset/yast2-core/agents-perl/ag_background.html
/usr/share/doc/packages/yast2-core/agents-perl/ag_background.html
/usr/share/doc/packages/yast2-core/agents-perl/ag_background.html
instdoc_subset/yast2-core/agent-probe/hwprobe.html
/usr/share/doc/packages/yast2-core/agent-probe/hwprobe.html
/usr/share/doc/packages/yast2-core/agent-probe/hwprobe.html
instdoc_subset/yast2-core/agent-any/anyagent.html
/usr/share/doc/packages/yast2-core/agent-any/anyagent.html
/usr/share/doc/packages/yast2-core/agent-any/anyagent.html
instdoc_subset/yast2-core/agent-ini/ini.html
/usr/share/doc/packages/yast2-core/agent-ini/ini.html
/usr/share/doc/packages/yast2-core/agent-ini/ini.html
instdoc_subset/yast2-core/agent-modules/modules.html
/usr/share/doc/packages/yast2-core/agent-modules/modules.html
/usr/share/doc/packages/yast2-core/agent-modules/modules.html
instdoc_subset/yast2-core/agents-perl/ycp-pm.html
/usr/share/doc/packages/yast2-core/agents-perl/ycp-pm.html
/usr/share/doc/packages/yast2-core/agents-perl/ycp-pm.html

42

Chapter 6. YaST Modules

Creating modules for YaST means extending its functionality. For this being possible it is necessary
to follow the infrastructural and functional particularities of YaST as well as some guidelines re-
garding the interaction of the module with the user and the rest of the system. In the following welll
have a closer look at these topics.

6.1. YCP Modules Overview

Throughout this document the term “YCP module” was mentioned repeatedly without providing a
sharp definition. In fact the term “module” is used quite loosely in the YaST world, because there
are severa kinds of modulesinvolved in different contexts. The following text shall lighten this top-
ic.

Different kinds of YCP modules

e Generic YCP modules

In principle every YCP file that provides a distinct functionality can be seen as a module. Typic-
a representatives of thiskind of module arethei nst _xxx. ycp filesthat are part of the YaST
installer. Modules of this kind mostly represent rather self-contained functionality, e.g like
i nst _keyboar d. ycp that provides the user dialog for selecting a keyboard during installa-
tion. These modules are usually called viaCal | Functi on().

* Library modules

This kind of module can be seen as what is called a library in other programming languages.
Usually these modules are a collection of functions that must be included to be used. As with
other programming languages, including in YCP means merely text insertion that takes place
each and every time an i ncl ude is stated. This is often adverse with respect to speed and
memory consumption.

e True YCP modules

This kind of module is the most interesting one. True modules represent an “object oriented” ap-
proach to module design. Because the mechanisms associated with them deserve some special
mention, the next section will cover this topic in more detail.

6.2. True YCP Modules

True modules are rather new in the YaST world and it is planned that they will replace the old meth-
od of including modules completely (with exception of some rare cases perhaps). The following sec-
tionswill outline the differences between these concepts.

6.2.1. Included Modules

YCP, originally planned as afunctional language, always did dynamic (i.e. runtime) binding of vari-
ables. Although useful in many cases, it's quite puzzling for someone used to “imperative”’ lan-
guages. So you could well program the following block and get an unexpected resullt.

integer x = 42;

define f() “~"{ return x; }
. Il lots of lines

X = 5b5;

return f(); // wll return 55 because of runtinme binding of x!

6.2.2. True Modules (Imported Mod-
ules)

Another widely misused feature is to include global definitions. While there was no alternative as
long as i ncl ude was the only referencing instrument, this is certainly not a good programming
practice in view of speed and memory considerations.

6.2.2. True Modules (Imported Modules)

In contrast to included modul es, true modules have some distinct properties that are shown in the list
below.

» Déefinition-time bindings
Definitions are evaluated in the sequence of the program flow.
* Onetimeinclusion

In contrast toi ncl ude thei nport statement includes the module only once even if there are
more than onei nport statement in the program flow. Later imports are silently ignored.

» Proprietary globa namespace

The module definition implies a module declaration that determines the namespace of the mod-
ule's global variable scope.

* Loca environment

Aside from the data located in the modul€e's global namespace al other data defined in the mod-
uleispurely local, i.e. isinvisible from the outside.

* Module constructor function

Each true module may have a constructor function that is automatically executed upon first im-
port.

The following listing is a brief sample of a true module.

{
/1 This is a nodule called "Sanple".

/I Therefore the file nanme MJUST be Sanple.ycp

/1 The "nodul e" statenent makes the nodul e accessible for '"inport'.
/1

nmodul e " Sanpl e";

This is a local declaration.

/1
/1 1t can only be 'seen' inside the nodul e.
/1

integer |local _var = 42;

e
This is a gl obal declaration.
It can be accessed fromoutside with the name space identifier 'Sanple::"'.

obal integer global_var = 27;

This is a global function.
I't has access to global _var *and* |ocal _var.

obal define sanple_f () “*{ return local _var + global _var; }

The module above can be used with the i mport statement. The syntax for file inclusion with i m
port is similar to i ncl ude. The interpreter automatically appends “.ycp” to the filename and
searches below / usr/ | i b/ YaST2/ nodul es. If the filename starts with “./”, the file is loaded
from the local directory. The global declarations of the module can then be accessed with the name
space identifier Sanpl e: : .

6.2.3. True Modules And Constructors

Note
i
The file name must match the module declaration! Inside modules, only variable or
function declarations are allowed. Stand-alone blocks or any kind of evaluation state-
ments are forbidden.
{

/1 This inports the 'Sanple'-nodule.

”’rport " Sanmpl e";

/1 The global function is called with the respective nane space identifier.
”\teger i = Sanple::sanple_f(); Il == 69

/1 No access to |ocal nodul e variables.

{/: Sanpl e: : | ocal _var; /1 ERROR, no access possible !

/1 No problemwith global variables.
Il

i = Sanpl e:: gl obal _var; /Il == 27
Sanpl e: : gl obal _var = 0; /'l This variable is witable !!
return Sanple::sample_f(); /1 == 42, since global _var is 0
}
Note

The first encounter of the statement i nport " Sanpl e"; triggers the loading of
“Sample.ycp”. Subsequent import statements are ignored, because “ Sample” is aready
defined. Consequently you can't replace a module during runtime'!

6.2.3. True Modules And Constructors

If aglobal function with the same name as the module is defined, it is treated as a constructor. The
constructor is called after the module has been loaded and evaluated for the first time. Because of
this the constructor could (and should) be defined at the beginning of the module. Despite being loc-
ated “on top” it can make use of the functions declared later in the file.

Module constructors are used mostly for initialization purposes, e.g. for setting local variables to
proper values. However, the actions within a constructor can be arbitrarily complex.

- Note

Constructors can't have any arguments. The result of calling a constructor from the
outsideisignored.

[l This is a nodule called "Class" with a constructor function.
:’ré)dul e "d ass";

/1 A globally accessible variable.

{qf obal integer class_var = 42;

/Il This is the constructor (same nane as the nodule).

11
gl obal define dass() ""{ class_var = 12345; }

/'l The usage of the "C ass"-nodul e.
Il
import "d ass";

return Cl ass::class_var; /Il will be 12345 !

6.3.1. Usability

6.3. Some Rules

Most often when a YaST module shall be created, this module will have some interaction with the
user. This usually implies the creation of dialogs to be displayed on screen. As you might have no-
ticed the dialogs that come ready-made with YaST follow a distinct “look and feel” which is due to
the fact that the YaST developers follow some rules regarding the visual appearance as well as the
functional behaviour of adialog. The keywords here are usability and GUI-consistency.

6.3.1. Usability

When it comes to user-interaction one concept that is stressed very often is usability or - more
speaking - user-friendliness. If you have ever heard s.th. about ergonomics you may aso know the
term Human Computer Interaction (HCI). For us regular folks usability is probably the best notation
because it best summarizes what's it al about. It means that the program in question is good
“usable” by the user. In general that means that operating a screen dialog should enjoin as low a bur-
den as possible on the user.

In order to have a good usability a system should satisfy the following criteria:

e Usersmust be able to accomplish their goal with minimal effort and maximum results.

» The system must not treat the user in a hostile fashion or treat the user asif they do not matter.
» The system can not crash or produce any unexpected results at any point in the process.

» There must be constraints on the users actions.

» Usersshould not suffer from information overload.

» The system must be consistent at every point in the process.

» The system must always provide feedback to the user so that they know and understand what is
happening at every point in the process.

1 I mportant
. If you want to create an interactive YaST module you should try to heed those rulesto

ease the users life and to assure your module fits smoothly into the surroundig YaST
environment which (hopefully) follows them too.

All that said above in essence is an outline from a very good article by Todd Burgess. If you are in-
terested in a more elaborate discussion of wusability you may have a look at ht-
tp://www.0sOpinion.com/Opinions/ ToddBurgess/ ToddBurgess1.html

[http://www.0sOpinion.com/Opinions/ ToddBurgess/ ToddBurgessl.html]

6.4. Module Layout

FIXME: To be done...

6.4.1. Module Skeleton

FIXME: To be done...

6.4.2. Module Example

FIXME: To be done...

46

http://www.osOpinion.com/Opinions/ToddBurgess/ToddBurgess1.html
http://www.osOpinion.com/Opinions/ToddBurgess/ToddBurgess1.html

Chapter 7. YaST2 Ul Layout and
Events

/7.1. YaST2 Layout
7.1.1. Summary: What's This All About?

Thisisboth atutorial and areference on how to lay out YaST2 dialogs.

Since experience shows that most people begin this with only a vague perception of YaST?2's con-
cepts, it also includes some basics that might be covered in other YaST2 documentation as well -
just enough to get started.

7.1.2. Basics and Terms

If you arein ahurry or - like most developers - you don't like to read docs, you can skip this section
and move right on to the next section. That is, if you think you know what the next few headlines
mean. Y ou can always come back here later.

Just don't ask anything that is explained here on the yast2-hackers mailing list - you'll very likely
just get a plain RTFM answer shot right back into your face. And this is the FM, so read it if you
need explanations. ;-)

7.1.2.1. The Ul

The Ul (user interface) is that part of YaST2 that displays dialogs. It is a separate process which
uses a separate interpreter. Always think of it as something running on a different machine: Thereis
the machine you want to install with YaST?2 (i.e. the machine where the disks will be formatted etc.)
and there is the machine that displays the dialogs - the Ul machine. In most cases, this will actually
be the same machine. But it doesn't need to be. Both parts of YaST2 might as well run on different
machines connected via a serid line, a network or by some other means of communication

(telepathy?:-)).

The logical consequence of this is that the Ul uses its own separate set of function definitions and
variables. You need to be real careful not to mix that up. Always keep in mind what part of YaST2
needs to do what and what variables need to be stored where. You can easily tell by the Ul prefix
within the Y CP code what parts are getting executed by the Ul.

7.1.2.2. Widgets

A widget is the most basic building block of the Ul. In short, each single dialog item like a PushBut-
ton, a SelectionBox or a TextEntry field is awidget. But there are more: Most static texts in dialogs
are widgets, too. And there are a lot of widgets you can't see: Layout boxes like HBox or VBox and
many more that don't actually display something but arrange other widgets in some way.

See the widget reference for details and alist of al available widgets.

7.1.2.3. Ul Independence and the libyui

There are several different Uls for YaST2. There is the Qt
[http://www.trolltech.com/products/index.html] based Ul (y2qt) as a graphical frontend which re-
quires the X Window System; this is what most people know as the "normal” YaST2 Ul. But there
is also a NCurses based Ul (y2ncurses) for text terminals or consoles. A web Ul (y2web) is being
developed at the time of this writing.

That means, of course, that all YaST2 dialogs need to be written in a way that is compatible with
each of those Uls. This is why libyui was introduced as an intermediate abstract layer between the

47

http://www.trolltech.com/products/index.html

7.1.3. Layout Building Blocks

Y CP application and the Ul. Y ou do not communicate directly with either y2qt, y2ncurses or y2web
- you communicate with the libyui.

Thus, YaST2 diaogs need to be described logically rather than in terms of pixel sizes and positions:
Y ou specify some buttons to be arranged next to each other rather than at positions (200, 50), (200,
150), (200, 200) etc. - whatever exactly this "next to each other" meansto the specific Ul.

Add to that the fact that there are several dialog languages to choose from: User messages or button
labels have different lengths in different languages. Just compare the length of English messages to
those in German or French, and you'll discover another good reason not to hard-code coordinates.

In addition to that, always keep in mind that the same dialog might require a different amount of
space in a different Ul. Overcrowded dialogs don't look good in the Qt Ul. In the NCurses Ul, they
will very likely break completely: There simply isn't as much space available (80x25 characters vs.
640x480 pixels).

7.1.2.4. The Nice Size

Each widget has a so-called nice size - thisis the size the widget would like to have in order to look
nice. E.g. for PushButtons that means the entire button labdl fitsinto the button. Likewise for labels.

Then there are widgets that don't have a natural nice size. For example, what size should a Selec-
tionBox get? It can scroll anyway, so anything that makes at least one line of the list visible will sat-
isfy the basic requirements. More space will make it look nicer; but how much is enough? The wid-
get cannot tell that by itself.

Such widgets report a somewhat random size as their nice size. Thisis a number chosen for debug-
ging purposes rather than for aesthetics. Y ou almost always need to specify the size from the outside
for that very reason. Always supply aweight for such widgets or surround them with spacings.

7.1.2.5. Initial Dialog Sizes

By default, all dialogs will be as large as they need to be - up to full screen size (which is Ul de-
pendent - 640x480 pixels for Qt, 80x25 characters for NCurses): The outermost widget is asked
what size it would like to have, i.e. its nice size. If that outermost widget has any children, for ex-
ample because it is alayout box, it will ask all of its children and sum up the individual sizes. Those
in turn may have to ask their children and so on. The resulting size will be the dialog's initial size -
unless, of course, this would exceed the screen size (Ul dependent, see above).

7.1.2.6. Full Screen Dialogs: "opt(‘defaultsize)

You can force full screen size for any dialog by setting the ™ def aul t si ze option when opening
it:
OpenDi al og(_

opt (" defaul tsize),
T VBox(. . .)

Thiswill create a dialog of 640x480 pixels (y2qt) or 80x25 characters (y2ncurses) - regardless of its
contents.

Use this for main windows or for popup dialogs with very much the same semantics - e.g. many of
the YaST?2 installation wizard's "expert" dialogs. Even though they are technically popup dialogs
and they return to the main thread of dialog sequence they have main window semantics to the user.
Use your common sense when considering whether or not to use this feature for a particular dialog.

Note: Not every Ul may be capable of this feature. Thisis only a hint to the Ul; you cannot blindly
rely on it being honored.

7.1.3. Layout Building Blocks

48

7.1.3. Layout Building Blocks

This section covers the widgets used for creating dialog layouts - the kind of widgets that are less
obvious to the user. If you are interested in the "real" widgets, i.e. the kind you can actually see,
please refer to the widget reference.

7.1.3.1. Layout Boxes: HBox and VBox

This is the most basic and also the most natural layout widget. The HBox widget arranges two or
more widgets horizontally, i.e. left to right. The VBox arranges two or more widgets vertically, i.e.
top to bottom.

The strategy used for doing this is the same, just the dimensions (horizontal / vertical) are different.
Each child widget will be positioned logically next to its neighbor. Y ou don't have to care about ex-
act sizes and positions; the layout box will do that for you.

See the description of the layout algorithm for details.

For creating more complex layouts, nest HBox and VBox widgets into each other. Usually you will
have a structure very much like this:

" VBox (
" HBox(...),
" HBox(...),

)

i.e. aVBox that has several HBoxes inside. Those in turn can have VBoxes inside etc. - nest as deep
asyou like.

Almost every kind of layout can be broken down into such columns (i.e. VBoxes) or rows (i.e.
HBoxes). If you feel you can't do that with your special layout, try using weights.

7.1.3.2. Specifying Proportions: HWeight and VWeight

By default, each widget in a layout box (i.e. in a HBox or a VBox) will get its nice size, no more
and no less. If for any reason you don't want that, you can exactly specify the proportions of each
widget in the layout box. You do that by supplying the widgets with a weight (to be more exact: by
making it the child of aweight widget, aHWeight or aVWeight).

You can specify percentages for weights, or you can choose random numbers. The layout engine
will add the weights of all children of alayout box and calculate percentages for each widget auto-
matically. Specify a HWeight for HBox children and a VWeight for VBox children.

Example 7.1. Specifying Proportions 1

" HBox(
" HWei ght (20, " PushButton("OK")),
“ HWei ght (50, ~PushButton("Cancel")),
)‘ HwWei ght (30, "~ PushButton("Hel p"))

In this example, the "OK" button will get 20%, the "Cancel" button 50% and the "Help" button 30%
of the available space. In this example, the weights add up to 100, but they don't need to.

Note: This dialog looks extremely ugly - don't try this at home, kids ;-)
The weight ratios will be maintained at all times, even if that means violating nice size restrictions

(i.e. awidget gets less space than it needs). You are the boss; if you specify weights, the layout en-
gine assumes you know what you are doing.

Example 7.2. Specifying Proportions 2

49

7.1.3. Layout Building Blocks

(See also creating widgets of equal size in the common layout techniques section)

* HBox (
" HWei ght (1, " PushButton("OK")),
" HWei ght (1, " PushButton("Cancel")),
)‘ HWei ght (1, " PushButton("Hel p"))

Note: Thisisa very common technique.

In this example all buttons will get an equal size. The button with the largest label will determine the
overall size and thus the size of each individual button.

Please note how the weights do not add up to 100 here. The value "1" is absolutely random; we
might as well have specified "42" for each button to achieve that effect.

Example 7.3. Specifying Proportions 3

The YaST2 wizard layout reserves 30% of horizontal space for the help text (a RichText widget)
and the remaining 70% for the rest of the dialog. The important part of that code (simplified for
demonstration purposes) looks like that:

" HBox (
“HWei ght (30, "RichText("Help text")),
" HWei ght (70, " VBox(
/1 the dialog contents
* HBox (
" PushButton("Back"),
“HCenter("~ PushButton("Abort Installation")),
“PushButton("Next")

)

Specifying the size of the help text like that is important for most kinds of widgets that can scroll -
like the RichText widget used here, for example. The RichText widget can take any amount of space
available; it will wrap lines by itself aslong as possible and provide scroll bars as necessary. Thus, it
cannot supply any reasonable default size on its own - you must supply one. We chose 30% of the
screen space - which of courseis absolutely random but suits well for the purposes of YaST2.

Use this technique for widgets like the SelectionBox, the Table widget, the Tree widget, the Rich-
Text, but also for less obvious ones like the TextEntry.

Note: Thislist may be incomplete. Use your common sense.

7.1.3.3. Rubber Bands: HStretch and VStretch

When you don't want parts of a dialog to be resized just because some neighboring widget needs
more space, you can insert stretch widgets to take any excess space. Insert a HStretch in a HBox or
a VStretch in a VBox. Those will act as "rubber bands"' and leave the other widgets in the corres-
ponding layout box untouched.

You can aso insert several stretches in one layout box; excess space will be evenly distributed
among them.

If there is no excess space, stretch widgets will be invisible. They don't consume any space unless
there istoo much of it (or unless you explicitly told them to - e.g. by using weights).

7.1.3.4. Making Common Widgets Stretchable: "opt(‘hstretch) and
‘opt(vstretch)

Some widgets that are not stretchable by default can be made stretchable by setting the

50

7.1.3. Layout Building Blocks

“hstret ch option. PushButtons are typical candidates for this: They normally consume only as
much space as they really need, i.e. their nice size. With the ™ hst r et ch option, however, they can
grow and take any extra space - very much like stretch widgets.

Please note, however, that all widgets for with a weight are implicitly stretchable anyway, so spe-
cifying " opt (“ hstretch) or opt (" vstretch) for them aswell isabsolutely redundant.

7.1.3.5. Spacings: HSpacing and VSpacing

Use HSpacing or V Spacing to create some empty space within a layout. This is normally used for
aesthetical reasons only - to make dialogs appear |ess cramped.

The size of aspacing is specified as a float number, measured in units roughly equivalent to the size
of acharacter in the respective Ul (1/80 of the full screen width horizontally , 1/25 of the full screen
width vertically). Fractional numbers can be used here, but text based Uls may choose to round the
number as appropriate - even if this means simply ignoring a spacing when its size becomes zero.

Y ou can combine the effects of a spacing and a stretch if you specify a hstretch or a vstretch option
for it: You will have arubber band that will take at least the specified amount of space. Use this to
create nicely spaced dialogs with areasonable resize behaviour.

Example 7.4. Spacings

* HBox (
“PushButton("OK"),
" HSpaci ng("opt(hstretch), 0.5),
“PushButton("Cancel")

)

This will create two buttons with a spacing between them. When the dialog is resized, the spacing
will grow.

7.1.3.6. Alignments: Left, Right, HCenter, Top, Bottom, VCenter,
HVCenter

Alignments are widgets that align their single child widget in some way.

HCenter centers horizontally, VCenter centers verticaly, HVCenter centers both horizontally and
vertically. The others align their child as the name implies.

More often than not, you could achieve the same effect with a clever combination of spacings, but
sometimes this might require an additional HBox within a HBox or a VBox within a VBox, i.e.
more overhead.

7.1.3.7. Compressing Excess Space: HSquash, VSquash,
HVSquash

Sometimes you wish to squeeze any extra space from a part of a dialog. This might be necessary if
you want to draw a frame around a RadioBox in a defaultsize dialog: Y ou want the frame drawn as
close as possible to the RadioButtons, not next to the window frame with lots of empty space
between the frame and the RadioButtons. Use a squash widget for that purpose:

" HVCent er (
" HVSquash(
“Frame("Select Software categories",
" VBox(

)
)

51

7.1.4. Common Layout Techniques

7.1.3.8. Optical Grouping: Frame

This is not exactly a layout-only widget - you can see it. It is being mentioned here more because
like layout widgets it can have children.

Use a Frame to visually group widgets that logically belong together - such as the RadioButtons of a
RadioBox or a group of CheckBoxes that have a meaning in common (e.g. individual file permis-
sions, software categoriestoinstal, ...).

Note: Do not overuse frames. They have anice visual effect, but only if used sparingly.

You may need to put a squash widget around the frame in order to avoid excessive empty space
between the frame and its inner widgets.

7.1.3.9. Grouping RadioButtons: RadioButtonGroup

The RadioButtonGroup is a widget go logically group individual RadioButton widgets. It does not
have a visual effect or an effect on the layout. All it does is to manage the one-out-of-many logic of
a RadioBox: When one RadioButton is selected, all the others in the same RadioBox (i.e. in the
same RadioButtonGroup) must be unselected.

Please notice that this might not be as trivial as it seems to be at first glance: There might be some
outer RadioBox that switches between severa general settings, enabling or disabling the others as
necessary. Any of those general settings might contain another RadioBox - which of course is inde-
pendent of the outer one. Thisiswhy you really need to specify the RadioButtonGroup.

Y ou usually just surround the VBox containing the RadioButtons with a The RadioButtonGroup.

Don't forget to include your RadioBox within a frame! RadioButtonGroup, Frame and HV Squash
usually all come together.

Example 7.5. Grouping RadioButtons

" HVCent er (
* HVSquash(
“Frame("Sel ect Installation Type",
" Radi oBut t onGr oup(
* VBox(
" Radi oButton(...),
" Radi oButton(. ..
" Radi oButton(. ..
)

~———

7.1.3.10. The Esoterics: ReplacePoint

A ReplacePoint is a "marker" within the widget hierarchy of alayout. You can later refer to it with
Repl aceW dget () . Use thisto cut out a part of the widget hierarchy and paste some other sub-
hierarchy to this point.

The YaST2 wizard dialogs use this a lot: The main window stays the same, just some parts are re-
placed as needed - usually the large part to the right of the help text, between the title bar and the
"previous' and "next" buttons.

A ReplacePoint has no other visual or layout effect.

7.1.3.11. Obsolete: Split

Thisis not used any more. If you know anything about it, forget it. If you don't, don't bother. It's old
and obsolete and nobody used it anyway.

52

7.1.4. Common Layout Techniques

7.1.4. Common Layout Techniques

Use the case studies in this section as building blocks for your own dialogs.
Remember that even though most of the examples use a horizontal layout (a HBox), the same rules

and techniques apply in the vertical dimension as well - just replace HBox with VBox, HWeight
with VWeight etc.

7.1.4.1. Creating Widgets of Equal Size

(0] 4 Cancel everything Help

Screen shot of the Layout-Buttons-Equal-Growing.ycp
[examples/Layout-Buttons-Equal-Growing.ycp] example

You can easily make several widgets the same size - like in this example. Just specify equal weights
for al widgets:

* HBox (
" HWei ght (1, " PushButton("OK")),
" HWei ght (1, " PushButton("Cancel everything")),
)‘H\/‘éi ght (1, "PushButton("Help"))

The widgets will grow or shrink when resized. They will aways retain equal sizes:

QK Cancel evenything Help

The same example, resized larger.

94 ncel everythi Help |

The same example, resized smaller.

7.1.4.2. Creating Widgets of Equal Size that don't Grow

QK. Cancel everything Help

Screen shot of the Layout-Buttons-Equal-Even-Spacedl.ycp
[examples/Layout-Buttons-Equal-Even-Spacedl.ycp] example

Widgets with a weight (such as these buttons) are implicitly stretchable. If you don't want the wid-
gets to grow, insert stretches without any weight between them. They will take all excess space - but
only if there is no weight specified (otherwise, the stretches would always maintain a size according
to the specified weight - not what is desired here).

* HBox (
" HWei ght (1, " PushButton("OK") Do
"HStretch(),
" HWei ght (1, " PushButton("Cancel everything")),
"HStretch(),
" HWei ght (1, " PushButton("Hel p"))

53

examples/Layout-Buttons-Equal-Growing.ycp
examples/Layout-Buttons-Equal-Even-Spaced1.ycp

7.1.4. Common Layout Techniques

(9] Cancel everything Help

The same example, resized larger. Notice how the stretches take the excess space.

[0]:4 celeuewt' Help |

The same example, resized smaller. The stretches don't need any space if there is not enough space
anyway.

7.1.4.3. Creating Widgets of Equal Size that don't Grow - with Spa-
cings in between

(8]:4 Cancel everything Help
Screen shot of the Layout-Buttons-Equal -Even-Spaced2.ycp
[examples/Layout-Buttons-Equal-Even-Spaced2.ycp] example. Notice the spacing between the but-

tons.

If you want some space between the individual widgets, insert a spacing. You could use both a spa-
cing and a stretch, but specifying the stretchable option for the spacing will do the trick as well - and
save some unnecessary widgets:

* HBox (
" HWei ght (1, " PushButton("OK")),
" HSpaci ng(opt (" hstretch), 3),
" HWei ght (1, " PushButton("Cancel everything")),
" HSpaci ng(" opt (" hstretch), 3),
" HWei ght (1, " PushButton("Hel p"))

The value "3" used here for the spacing is absolutely random, chosen just for aesthetics. Use your
own as appropriate.

ok Cancel everything | Help

The same example, resized larger. Notice how the spacings take the excess space.

QK | celeuer*ftl Help |

The same example, resized smaller.

As you can seg, the spacings have one disadvantage here: They need the space you specified even if
that means that there is not enough space for the other widgets.

7.1.4.4. Specifying the Size of Scrollable Widgets

As mentioned before, most kinds of widgets that can scroll don't have a natura nice size. If the
overall size of your layout is fixed by some other means (e.g. because it is a full screen dialog), you
can have it take the remaining space or specify proportions with weights.

If thisis not the case, create such "other means' yourself: Surround the scrollable widget with wid-

examples/Layout-Buttons-Equal-Even-Spaced2.ycp

7.1.5. Hints and Tips

gets of awell-defined size, e.g. with spacings.
Prevent the spacings from actually using precious screen space themselves by putting a V Spacing in

a HBox or a HSpacing in a VBox - it will resize the corresponding layout box in its secondary di-
mension. It will take no spaceinits primary dimension.

Example 7.6. Specifying the Size of Scrollable Widgets

" VBox(
" HSpaci ng(40), /1 make the scrollable widget at |east 40 units wide
* HBox (
*VSpaci ng(10), /1 make the scrollable widget at |east 10 units high
“Table(...) /'l or any other scrollable w dget

)

See aso the Table2.ycp [examples/Table2.ycp], Table3.ycp [examples/Table3.ycp], Tabled.ycp
[examples/Tabled.ycp] and Table5.ycp [examples/Tableb.ycp] examples.

As a general rule of thumb, use this technique whenever you place a scrollable widget in a non-de-
faultsize dialog. Don't leave the size of such widgets to pure coincidence - always explicitly specify
their sizes.

7.1.5. Hints and Tips
7.1.5.1. Debugging Aids: The Log File

printf() is your best friend when debugging - every seasoned programmer knows that. YaST2 has
something very much like that: y2log(), available both in YCP and in the C++ sources. It is being
used alot, and you can add your own in your Y CP code. Thus, if something strange happens, check
the log file - either in your home directory (~/.y2l og) or the system wide log file (/
var/ 1 og/ y2l og).

You can increase the level of verbosity by setting the Y2DEBUG environment variableto 1 - both in
your shell and at the boot prompt (for debugging during an installation) - boot with something like

I'i nux Y2DEBUG=1

Log files will be wrapped when they reach a certain size - i.e. the current log file is renamed to
~/ .y2l og-1, ~/.y2l og-2 etc. or / var/ 1 og/ y2l og- 1, /var /Il og/ y2l og- 2 etc,, and a
new log file is begun.

7.1.5.2. Keep it Simple - Do not Overcrowd Dialogs!

If the layout engine complains about widgets not getting their nice size and tell you to check the lay-
out, please do that before you write a bug report. More often than not that just means that your dia-
log is overcrowded. That doesn't only raise technical problems: In that case your dialog most likely
is too complex and not likely to be understood by novice users. In short, you very likely have a
problem with your logical design, not with the layout engine. Consider making it easier or splitting
it up into several dialogs - e.g. an easy-to-understand novice level base dialog and an advanced "ex-
pert" dialog. Use YaST2's partitioning, software selection and LILO configuration dialogs as ex-
amples for how to do this.

You might also consider replacing some widgets with others that don't use as much screen space -
e.g. use a ComboBox rather than a SelectionBox, or a ComboBox rather than a RadioBox. But al-
ways keep in mind that this just reduces screen space usage, not complexity. Plus, widgets like the
ComboBox frequently are harder to operate from a user's point of view because they require more
mouse clicks or keys presses to get anything done. Use with caution.

55

examples/Table2.ycp
examples/Table3.ycp
examples/Table4.ycp
examples/Table5.ycp

7.1.6. The Layout Algorithm - How the
Layout Engine Works Internally

7.1.5.3. Always Keep Other Uls in Mind - What does it Look Like
with NCurses?

When you created a new dialog or substantially changed an existing one always remember to check
it with the other Uls, too. If it looks good with the Qt Ul that doesn't mean it looks good with the
NCurses Ul as well - it might even break completely. There might be too many widgets or parts of
widgets may be invisible because of insufficient screen space.

If you don't like that idea always remember some day you might be that poor guy who can't run
YaST2 with Qt - maybe because of a brand new graphics card the X server doesn't support yet or
maybe because you have to install a server system that just has a serial console.

The text based version may not need to look as good (but it would sure be niceiif it did), but it needs
to work. That means all widgets must be there and be visible. If they are not, you really need to re-
arrange or even redesign your dialog. Possibly before somebody from the support department finds
it out the hard way - because a user complained badly about it.

7.1.5.4. Do not Neglect Mouseless Users - Always Provide Key-
board Shortcuts!

Very much the same like the previous issue: Consider somebody who wants or needs to operate
your dialog without a mouse. Maybe he doesn't have one or maybe it doesn't work - or maybe he
uses the NCurses Ul. There are even alot of users who can work awhole lot quicker if they can use
keyboard shortcuts for common tasks - e.g. activating buttons or jumping to text input fields. You
can and should provide keyboard shortcuts for each of those kinds of widgets.

Of course this needs to be double-checked with each of the tranglated versions: Keyboard shortcuts
not only are language dependent (so users can memorize them), they are even contained within mes-
sages files. The trandators need to include their own in the respective language, and that means
chances are some of the sort cuts are double used - e.g. Alt-K may be used twice in the same dialog,
which renders the second use ineffective. Always check that, too.

7.1.6. The Layout Algorithm - How the Layout Engine
Works Internally

You don't need to know the internals of the YaST2 Ul layout engine in order to be able to create
YaST2 dialogs. But this kind of background knowledge certainly helps a lot when you need to de-
bug alayout - i.e. when a dialog you programmed behaves "strange" and doesn't look at all like you
expected.

7.1.6.1. Primary and Secondary Dimensions

A HBox lays out its children horizontally, a VBox vertically. How they do that is very much the
same except for the dimensions; The HBox uses horizontal asits primary dimension, the VBox ver-
tical. The other dimension is called the secondary dimension (vertical for the HBox, horizontal for
the VBoX).

7.1.6.2. Calculating the Nice Size
7.1.6.2.1. Secondary Nice Size

56

Calculating the nice size in the secondary dimension is easy: It is the maximum of the nice sizes of
all children. Thus, for a HBox thisis the nice height of the highest child, for a VBox thisisthe nice
width of the widest child.

If any child is alayout box itself (or any other container widget), this process will become recursive
for the children of that layout box etc. - this holds true for both the primary and the secondary di-
mension.

7.1.6. The Layout Algorithm - How the
Layout Engine Works Internally

7.1.6.2.2. Primary Nice Size

In the primary dimension things are a bit more complicated: First, the nice sizes of al children
without weights are summed up.

Then the sizes of all children with weights are added to that sum - in such a way that each of those
gets at least its nice size, yet all weights are maintained with respect to each other. |.e. when a button
is supposed to get 30% he must get it, but its label must still be completely visible.

Maybe some of the children with weights need to be resized larger because of those restrictions. Ex-
actly how large is calculated based on the so-called boss child. This is the one widget that com-
mands the overall size of all children with weights, the one with

max (nice size / weight)

The boss child's nice size and its weight determine the accumulated nice size of al children with
weights. The other children with weights will be resized larger to get their share of that accumulated
size according to their individua weights.

By the way this is why all children with weights are implicitly stretchable - most of them will be
resized larger so the weights can be maintained at all times.

7.1.6.3. Setting the Size of a Layout - SetSize()

Each widget has a SetSize() method. Thiswill be called recursively for all widgets from top (i.e. the
outer dialog) to bottom. When a dialog is opened, the Ul determines how large a dialog should be-
come. The Ul triesto use the dialog's nice size, if possible - unless the defaultsize option is set or the
nice size exceeds the screen size, in which case the screen size is used.

After the dialog is opened, the SetSize() method will be called again when:

* Theuser resizesadiaog.
» A dignificant portion of the dialog changes - e.g. because of ReplaceWidget().

All of those cases will cause are-layout of the entire dialog.
For layout boxes, the SetSize() method works like this:

If none of the children of alayout box has aweight, any extra space (i.e. space in excess of the nice
size) is evenly distributed among the stretchable children. All non-stretchable children get their nice
size, no more.

If there are not any stretchable children, there will be empty space at the end of the layout (i.e. to the
right for a HBox and at the bottom of a VBox). If any child has a weight, al children without
weights will get no more than their nice sizes - no matter whether or not they are stretchable.

The rest of the space will be distributed among the children with weights according to the individual
weights.

There is one exception to that rule, however: If there is more space than the weighted childrens' nice
size and there are any stretches or stretchable spacings without weights, the excess space will be
evenly distributed among them.

This may sound like a very pathological case, but in fact only this gives the application programmer

achanceto create equal sized widgets that don't grow, maybe with a little extra space between them.
Simple popup dialogs with some buttons are typical examples for this, and this is quite common.

7.1.6.3.1. Running out of Space - the Pathological Cases

57

7.2. Ul Events

There should be enough space for any layout box: By default, the overall size of adialog is calcu-
lated based on its nice size. But this might exceed the full screen size, or the user might manually
have resized the dialog (some Uls are capable of that) - both of which cases will cause a dialog to
get lessthan its nice size.

If there is not enough space, the layout engine will complain about that fact in the log file, asking
you to "check the layout". Please do that if this message always appears when a certain dialog is
opened - you may have to rearrange your dialog so all widgets properly fit into it.

Anyway, if it happens, some widgets will get less than their nice size and probably will not ook
good; some might even be completely invisible.

Even then, aslong as there is enough space for al children without weights, those will get their nice
sizes. Only the remaining space will be distributed among the children with weights.

If the space isn't even enough for the children without weights, each of them will have to spend
some of its space to make up for the loss. The layout engine tries to treat each of them equally bad,
i.e. each of them hasto give some space.

7.1.6.3.2. Centering in the Secondary Dimension

stretchable

This behaviour may be somewhat unexpected, but not only is this compatible with older versions of
the YaST2 Ul, it also comes very handy for ssmple layout tasks like this (taken from the Label 1.ycp
[examples/Label1.ycp] example):

" VBox(
“Label ("Hello, world"),
“PushButton("OK")
)

This button will be centered horizontally - without the need for a HCenter around it.

7.2. Ul Events

7.2.1. Introduction

7.2.1.1. The YaST2 Event Model
7.2.1.1.1. Classic GUI Event Loops

58

Classic graphical user interface (GUI) programming is ailmost always event-driven: The application
initializes, creates its dialog(s) and then spends most of itstime in one central event loop.

When the user clicks on a button or enterstext in an input field, he generates events. The underlying
GUI toolkit provides mechanisms so the application can react to those events - perform an action
upon button click, store the characters the user typed etc.; al thisis done from callback functions of
one kind or the other (whatever they may be called in the respective GUI toolkit).

In any case, it all comes down to one single event loop in the application from where small func-
tions (let's call them callbacks for the sake of simplicity) are called when events occur. Those call-
backs each contain a small amount of the application's GUI logic to do whatever is to be done when
the respective event occurs. The overal application logic is scattered among them all.

This approach is called event-driven. Most GUI toolkits have adopted it.

Depending on the primary goal of a GUI application, this event-driven approach may or may not be
appropriate. It is perfectly suitable for example for word processor applications, for web browsers or
for most other GUI applications that have one central main window the user works with most of his
time: The user is the driving force behind those kinds of applications; only he knows what he next
wishes to do. The application has no workflow in itself.

examples/Label1.ycp

7.2.1. Introduction

Thus the event-driven application model fits perfectly here: The callbacks can easily be self-
contained; thereis little context information, and there are limited application-wide data.

7.2.1.1.2. The YaST2 Approach

Applications like YaST2 with all its installation and configuration workflows, however, are radic-
ally different. The driving force here is the application workflow, the sequence of dialogs the user is
presented with.

Of course this can be modeled with a traditional event loop, but doing that considerably adds to the
complexity of the application: Either the application needs a lot more callbacks, or the callbacks
need to keep track of alot of statusinformation (workflow step etc.) - or both.

For the YaST2 Ul, a different approach was chosen: Rather than having one central event loop and
lots of callbacks, the flow control remains in the interpreted Y CP code. User input is requested on
demand - very much like in simplistic programming languages like the first versions of BASIC.

This of course means that there is no single one central "waiting point" in the program (like the
event loop in the event-driven model), but rather lots of such waiting points spread all over the YCP
code within each Userlnput() or WaitForEvent() statement.

Side note: Of course a graphical Ul like the YaST2 Qt Ul still has to be prepared to perform screen
redraws whenever the underlying window system requires that - i.e. whenever X11 sends an Expose
(or similar) event. For this purpose the Qt Ul is multi-threaded: One thread takes care of X event
handling, one thread is the actual YCP Ul interpreter. This instant screen redraw is what you lose
when you invoke y2base with the "--nothreads’ command line option.

Y CP was meant to be an easy-to-understand programming language for developers who specialize
in a particular aspect of system configuration or installation, not in GUI programming.

Practical experience with all the YaST2 modules developed so far has shown that application de-
velopers tend to adopt this concept of Userlnput() very easily. On the other hand it is a widely
known fact that event-driven GUI programming means a steep learning curve because (as men-
tioned before) it requires splitting up the application logic into tiny pieces for all the callbacks.

Thus, this design decision of YaST2 seems to have proven right much more often than there are
problems with its downsides (which of course also exist).

7.2.1.1.3. Simplicity vs. Features

The basic idea of YaST2 Ul programming is to create a dialog asking the user for some data and
then continue with the next such dialog - meaning that most of those dialogs are basically forms to
be filled in with an "OK" (or "Next") and a "Cancel" (or "Back™") button. The YCP application is
usually interested only in those button presses, not in each individual keystroke the user performs.

Thisiswhy by default UserInput() and related functions react to little more than button presses - i.e.
they ignore all other events, in particular low-level events the widgets handle all by themselves like
keystrokes (thisis the input fields' job) or selecting items in selection boxes, tables or similar. Most
Y CP applications simply don't need or even want to know anything about that.

This makes Y CP Ul programming pretty simple. The basic principle looks like this:

! Ul : : OpenDi al og(
" VBox(

. [/ Sonme input fields etc.

:i-IBox(
“PushButton(id(back), "Back"),
“PushButton(id(next), "Next")
)

)
)§

synbol button_id = U ::Userlnput();
if (button_id == "next)
/1 Handl e "Next" button

59

7.2.1. Introduction

else if (button_id == "“back)

// Handl e "Back" button

) Ul ::d oseDial og();

Strictly spoken, you don't even require aloop around that - even though this is very useful and thus
strongly advised.

All that can make Userlnput() return in this example are the two buttons. Other widgets like input
fields (TextEntry), selection boxes etc. by do not do anything that makes Userlnput() return - unless
explicitly requested.

7.2.1.1.4. The notify Option

If aYCP application isinterested in events that occur in awidget other than a button, the notify wid-
get option can be used when creating it with Ul : : OpenDi al og() .

Example 7.7. The notify option

Ul :: OpenDi al og(. . .
“Sel ectionBox(id(pizza), “opt(notify), ...),

‘Téble(‘id(‘toppings), ‘opt(notify, “immediate), ...),
)

In general, the notify options makes Userlnput() return when something "important” happens to that
widget. The immediate option (always in combination with notify!) makes the widget even more
"“verbose".

Note: Userlnput() always returns the ID of the widget that caused an event. Y ou cannot tell the dif-
ference when many different types of event could have occured. This is why there are different
levels of verbosity with “opt(*notifyA) or “opt("notify,A “immediateA) and the new WaitForEvent()
Ul builtin function which returns more detailed information. A Table widget for example can gener-
ate both Activated and Sel ectionChanged WidgetEvents.

Exactly what makes Userlnput() return for each widget classis described in full detail in the YaST?2
event reference.

7.2.1.1.5. Downsides and Discussions

60

The YaST2 event handling model has been (and will probably always remain) a subject of nev-
erending discussions. Each and every new team member and everybody who casualy writes a
YaST2 module (to configure the subsystem that is his real responsibility) feels compelled to restart
this discussion.

The idea of having a function called UserInput() seems to conjure up ghastly memories of horrible
times that we hoped to have overcome: The days of home-computer era BASIC programming or
university Pascal lectures (remember Pascal's readin()?) or even low-tech primitive C programs
(gets() or scanf() are not better, either).

But it's not quite like that. Even though the function name is similar, the concept is radically differ-
ent: It isnot just one single value that is being read, it isawhole dialog full of whatever widgets you
see fit to put there. All the widgets take care of themselves; they all handle their values automatic-
aly. You just have to ask them (Ul::QueryWidget()) for the values when you need them (leave them
alone aslong as you don't).

The similarity with computing stone age remains, however, in that you have to explicitly call User-
Input() or related when you need user input. If you don't, you open your dialog, and a moment later

7.2.1. Introduction

when you continue in your code it closes again - with little chance for the user to enter anything.

Thus, the YaST2 approach hasitsintrinsic formalismsin that sequence:

OpenDi al og(...);
User I nput () ;

QueryWdget (...);
QueryWdget (...);
QueryWdget (...);

Cl oseDi al og();

Thisisthe price to pay for thislevel of simplicity.

7.2.1.1.6. Design Alternatives
In the course of those discussions some design alternatives began to emerge:

1. Usethesingle-event-loop and callback model like most other toolkits.

2. Keep multiple event loops (like Userlnput()), but add callbacks to individual widget events
when needed so the YCP application can do some more fine-grained control of individual
events.

3. Keep multiple event loops, but return more information than this simplistic Userlnput() that
can return no more than one single ID.

Having just a single event loop would not really solve any problem, but create a lot of new ones: A
sequence of wizard style dialogs would be really hard to program. Switching back and forth between
individual wizard dialogs would have to be moved into some callbacks, and a lot of status data for
them &l to share (which dialog, widget status etc.) would have to be made global.

What a mess. We certainly don't want that.

All the callback-driven models have one thing in common: Most of the application logic would have
to be split up and moved into the callbacks. The sequence of operations would be pretty much invis-
ible to the application devel oper, thus the logical workflow would be pretty much lost.

Most who discussed that agreed that we don't want that, too.

Add to that the formalisms that would be required for having callbacks: Either add a piece of call-
back code (at least a function name) to Ul::OpenDialog() for each widget that should get callbacks
or provide a new Ul builtin function like, say, Ul::SetCallback() or Ul::AddCallback() that gets a
Y CP map that specifies at least the widget to add the callback to, the event to react to and the code
(or at least a function name) to execute and some transparent client data where the application can
pass arbitrary datato the callback to keep the amount of required global data down.

Ul:: RemoveCallback()

It might look about like this:

define void sel ecti onChanged(any widgetlD, nmap event, any clientData) {
11 Handl e Selecti onChanged event

}. S

define void activated(any wi dgetID, map event, any clientData) {
/1 Handle Activated event

. S

Ui;:q)enDi al og(
‘Tabl e("id(devices), ...),
D

Ul : : AddCal | back(i d(" devices), "SelectionChanged, nil);
Ul :: AddCal | back(i d(devices), “Activated, nil);

61

7.2.1. Introduction

If you think "oh, that doesn't look all too bad”, think twice. This example is trivial, yet there are
already three separate places that address similar things:

» The callback definitions. Agreed, you'll need some kind of code that actually does the applica-
tion's business somewhere anyway. But chances are that the callbacks are no more than mere
wrappers that call the functions that actually do the application's operations. Y ou don't want to
mix up al the back engine code with the Ul related stuff.

» Widget creation with Ul::OpenDialog()

» Adding callbacks with Ul:: AddCallback()

A lot of GUI toolkits do it very much this way - most Xt based toolkits for example (OSF/M otif,
Athena widgets, ...). But this used to be a source of constant trouble: Change a few things here and
be sure that revenge will come upon you shortly. It smply adds to the overall complexity of
something that is already complex enough - way enough.

Bottom line: Having callbacksis not really an improvement.

What remains is to stick to the general model of YaST2 but return more information - of course
while remaining compatible with existing Y CP code. We don't want (neither can we economically
afford to) break al existing YCP code. So the existing Ul builtin functions like Userlnput() or
Polllnput() have to remain exactly the same. But of course we can easily add a completely new Ul
builtin function that does return more information.

This is what we did. This is how WaitForEvent() came into existence. It behaves like Userlnput(),
but it returns more information about what really happened - in the form of an event map rather than
just asingle ID. That map contains that ID (of course) plus additional data depending on the event
that occured.

One charming advantage of just adding another Ul builtin is that existing code does not need to be
touched at al. Only if you want to take advantage of the additional information returned by Wait-
ForEvent() you need to do anything at all.

So let's al hope with this approach we found a compromise we al can live with. While that prob-
ably will not prevent those discussions by new team members, maybe it will calm down the current
team members discussion a hit. ;-)

7.2.1.2. Event Delivery

7.2.1.2.1. Event Queues vs. One Single Pending Event

62

Since the YaST2 Ul doesn't have a single event loop where the program spends most of its time, an
indefinite period of time may pass between causing an event (e.g., the user clicks on a widget) and
event delivery - the time where the (Y CP) application actualy receives the event and begins pro-
cessing it. That time gap depends on exactly when the Y CP code executes the next Userlnput() etc.
Statement.

This of course means that events that occured in the mean time need to be stored somewhere for the
Y CP code to pick them up with Userlnput() etc.

The first approach that automatically comes to mind is "use a queue and deliver them first-in, first-
out". But this brings along its own problems:

Events are only useful in the context of the dialog they belong to. When an event's dialog is closed
or when a new dialog is opened on top of that event's dialog (a popup for example) it doesn't make
any more sense to handle that event. Even worse, it will usualy lead to utter confusion, maybe even
damage.

Imagine this situation: The user opens a Y aST2 partitioning module just to have alook at his current
partitioning scheme.

7.2.1. Introduction

Side note: This scenario isfictious. The real YaST2 partitioning module is not like that. Any simil-
arities with present or past partitioning modules or present or past YaST2 hackers or users is pure
coincidence and not intended. Ah yes, and no animals were harmed in the process of making that
scenario. ;-)

The main dialog with an "OK" button (with, say, ID “ok) opens.

It takes some time to initialize data in the background.

The user clicks"OK".

The background initialization takes some more time.

The user becomes impatient and clicks"OK" again.

The background initialization still is not done.

The user clicks "OK" again.

Theinitialization is done. Usually, the Y CP code would now reach Userlnput() and ueued events
would be delivered (remember, thisis only afictious scenario - the Ul does not really do that).
Thefirst "OK" click from the queueis delivered - i.e. Userlnput() returns “ok.

But this doesn't happen this time: The initialization code found out that something might be
wrong with the partitioning or file systems. It might make sense to convert, say, the mounted /
usr file system from oldLameFs-3.0 to newCool Fs-0.95Beta - which usually works out alright,
but of course you never know what disaster lies ahead when doing such things with file systems
(and, even worse, with an experimenta beta version).

* Theinitialization code opens a popup dialog with some text to informs the user about that. The
user can now click "OK" to do trigger the file system conversion or "Cancel" to keep everything
asitis.

» The handler for that popup dialog calls Userlnput() - which happily takes the next event from the
gueue - the "ok button click that doesn't really belong to that dialog, but Userlnput() cannot tell
that. Neither can the caler. It simply gets "ok as if the user had clicked the "OK" button in the
popup.

e The program has to assume the user confirmed the request to convert the file system. The con-
version starts.

» The experimental beta code in newCool Fs-0.95Beta cannot handle the existing data in that parti-
tion as it should. It asks if it is alright to delete al data on that partition. Another popup diaog
opens with that question.

» The handler for that confirmation popup takes the next event from the queue which is the third
"ok click that should have gone to the main window. But the handler doesn't know that and takes
that "ok as the confirmation it asked for.

* /usr iscompletely emptied. Half of the system is gone (along with most of YaST2'sfiles). The
disaster is complete - the system is wrecked beyond repair.

Argh. What a mess.

Y es, this example is contrived. But it shows the general problem: Events belong to one specific dia-
log. It never makes any sense to deliver eventsto other dialogs.

But thisisn't al. Even if the internal Ul engine (the libyui) could make sure that events are only de-
livered to the dialog they belong to (maybe with a separate queue for each dialog), events may never
blindly be taken from any queue. If the user typed (or clicked) alot ahead, disaster scenarios similar
to the one described above might occur just as well.

Events are context specific. The dialog they belong to is not their only context; they also depend on
the application logic (i.e. on Y CP code). This is another byproduct of the YaST2 event handling ap-
proach.

It has been suggested to use (per-dialog) event queues, but to flush their contents when the dialog
context changes:

When anew dialog is opened (OpenDialog())

When the current dialog is closed (CloseDialog())

When parts of the dialog are replaced (ReplaceWidget())

Upon the Y CP application's specific request (new Ul builtin FlushEvents())

63

7.2.1. Introduction

Exactly when and how this should happen is unclear. Every imaginable way has its downsides or
some pathologic scenarios. You just can't do thisright. And Y CP application developers would have
to know when and how this happens - which is clearly nothing they should be troubled with.

This is why all current YaST2 Uls have onle one single pending event and not a queue of events.
When a new event occurs, it usually overwrites any event that may still be pending - i.e. events get
lost if there are too many of them (more than the Y CP application can and wants to handle€).

7.2.1.2.2. Event Reliability

While it may sound critical to have only one single pending event, on this works out just as every-
body expects:

* When the YCP application is busy and the user clicks wildly around in the dialog, only the last
of his clicks is acted upon. This is what al impatient users want anyway: "do this, no, do that,
no, do that, no, cancel that al". The "Cancel" is what he will get, not everything in the sequence
he clicked.

e The YCP application does not get bogged down by a near-endless sequence of events from the
event queues. If things are so sluggish that there are more events than the application can handle
in the first place, getting even more to handle will not help any.

» YaST2 didogs are designed like fill-in forms with a few (not too many) buttons. The input field
widgets etc. are self-sufficient; they do their own event handling (so no typed text will get lost).
No more than one button click in each dialog makes sense anyway. After that the user has to
wait for the next dialog to answer more questions. It does not make any sense to queue events
here; the context in the next dialog is different anyway.

As described above, events can and do get lost if there are too many of them. Thisis not a problem
for button clicks (the most common type of event), and it should not be a problem for any other
eventsif the Y CP application iswritten defensively.

7.2.1.2.3. Defensive Programming

Don't take anything for granted. Never rely on any specific event to always occur to make the ap-
plication work allright.

In particular, never rely on individual SelectionChanged WidgetEvents to keep several widgets in
sync with each other. If the user clicks faster than the application can handle, don't smply count
those events to find out what to do. Always treat that as a hint to find out what exactly happened:
Ask the widgets about their current status. They know best. They are what the user sees on the
screen. Don't surprise the user with other values than what he can see on-screen.

In the past, some widgets that accepted initially selected items upon creation had sometimes
triggered events for that initial selection, sometimes not. Even though it is a performance optimiza-
tion goal of the Ul to suppress such program-generated events, it cannot be taken for granted if they
occur or not. But it's easy not to rely on that. Instead of writing code like this:

{
/1 Exanpl e how NOT to do things
Ul : : OpenDi al og(

* Sel ectionBox(id(colors),
[

item(id("FF0000"), "Red"),
“item(id("O00FFO0"), "Blue",true), // Initially selected
“item(id("0000FF"), "G een")

Intentionally NOT setting the initial color:

Sel ecti onChanged event right upon entering the event | oop.
The Sel ecti onChanged handl er code will take care of setting the initial color.
THIS IS A STUPI D | DEA!

—_—————

/
/
/| Selecting an itemin the SelectionBox upon creation will trigger a
/
/
/

map event = $[];

r epeat

7.2.2. Event-related Ul Builtin Func-
tions

event = Ul ::WaitForEvent();
if (event["ID']:nil == "colors)
if (event["EventReason"]:nil == "Sel ecti onChanged")

/1 Handl e col or change
setCol or (Ul ::QueryWdget(id(colors), “Selectedltem));
}
}

} untii'i event["ID']:nil == “close);

/'l Fixed the broken logic in the exanpl e above
Ul : : OpenDi al og(

‘Sel ect i onBox(id(colors),
m(" i d("FFO000"), "Red")

i d(" 00FF00" "Bl ue", t rue), // Initially selected

: "
“iten(id("0000FF"). "Geen")

]
Dk

/1 Set initial color
setCol or (Ul ::QueryWdget(id(colors), “Selectedltem));

te
te
te
)

map event = $[];
r epeat
! event = Ul ::WaitForEvent();
if (event["ID']:nil == "colors)
if (event["EventReason"]:nil == "Sel ectionChanged")

/1 Handl e col or change
setCol or (Ul ::QueryWdget(id(colors), “Selectedltem));

}

} until (event["ID']:nil == "close);

It's that easy. This small change can make code reliable or subject to failure on minor outside
changes - like a version of the Qt lib that handles things differently and sends another Selection-
Changed Qt signal that might be mapped to a SelectionChanged WidgetEvents - or does not send
that signal any more like previous versions might have done.

Being sceptical and not believing anything, much less taking anything for granted is an attitude that
most programmers adopt as they gain more an more programming experience.

Keep it that way. It's a healthy attitude. It helps to avoid a lot of problems in the first place that
might become hard-to-find bugs after awhile.

7.2.2. Event-related Ul Builtin Functions
This section describes only those builtin functions of the YaST2 user interface that are relevant for

event handling. The YaST2 Ul has many more builtin functions that are not mentioned here. Refer
to the Ul builtin reference for details.

The Event-related Ul Builtin are available in the reference
7.2.3. Event Reference

7.2.3.1. Event Maps in General

Use WaitForEvent() to get full information about a YaST2 Ul event. Userlnput() only returns a
small part of that information, the ID field of the event map.

65

7.2.3.2. Event Types
7.2.3.2.1. WidgetEvent

66

7.2.3. Event Reference

The event map returned by WaitForEvent() always contains at least the following elements:

Map Key Value Type Valid Values Description
EventType string
* WidgetEvent e The type of this
event.
* MenuEvent
_ e Use this for general
e TimeoutEvent event classification.
e CancelEvent
KeyEvent
* DebugEvent
ID any The ID (awidget ID for
WidgetEvents) that
caused the event. This
is what Userlnput() re-
turns.
EventSerialNo integer >=0 The serial number of

this event. Intended for
debugging.

All WidgetEvents have these map fields in common:

Map Key

Value Type

Valid Values

Description

EventType

string

WidgetEvent

(constant)

EventReason

string

e Activated
e VaueChanged
e SelectionChanged

The reason for this
event. This is
something like an event
sub-type. Use this to
find out what the user
really did with the wid-
get.

any

The ID of the widget
that caused the event.
This is what Userln-
put() returns.

Widget!D

any

The ID of the widget
that caused the event.
This is nothing but an
dias for "ID", but with
this alias you can easily
find out if thisis awid-
get event at the same
time as you retrieve the
widget ID: No other
events than Wid-
getEvent have this
field.

7.2.3. Event Reference

Map Key Value Type Valid Values Description
WidgetClass string PushButton Selection-|The class (type) of the
Box Table CheckBox|widget that caused the
event.
WidgetDebugL abel string

The label (more gener-
a: the widget's shortcut
property) of the widget
that caused the event -
in human readable form
without any shortcut
markers ("&"), maybe
abbreviated to areason-
able length.

This label is trandated
to the current locae
(the current user's lan-

guage).

This is intended for de-
bugging so you can eas-
ily dump something in-
to the log file when you
get an event.

Wigets that don't have a
label don't add this field
to the event map, so
make sure you use a
reasonable default
when using a map |ook-
up for this field: Don't
use nil, use ™" (the emt-
py string) instead.

7.2.3.2.2. Activated WidgetEvent

Map Key

Value Type

Valid Values

Description

EventReason

string

Activated

(constant)

An Activated WidgetEvent is sent when the user explicitly wishesto activate an action.

Traditionally, this means clicking on a PushButton or activating it with some other means like press-
ing its shortcut key combination, moving the keyboard focus to it and pressing space.

Some other widgets (Table, SelectionBox, Tree) can aso trigger this kind of event if they have the

notify option set.

User interface style hint: Y CP applications should use this to do the "typical" operation of that item
- like editing an entry if the dialog has an "Edit" button. Use this Activated WidgetEvent only as a
redundant way (for "power users") of invoking an action. Always keep that "Edit" (or similar) but-
ton around for novice users; double-clicks are by no way obvious. The user shouldn't need to experi-
ment how to get things done.

Widget Type

Widget Options

Action to Trigger the Event

PushButton

(none)

e Single click on the button

(Q1).

67

7.2.3. Event Reference

Widget Type Widget Options Action to Trigger the Event

* Press space on the button.

e Pressreturn anywherein the
didlog. This activates the
didog's default button if it
has any and if the respective
Ul can handle default but-
tons.

Table “opt("notify)
e Double click on an item
(Q1).

e Press space on an item.

SelectionBox “opt("notify)
¢« Double click on an item
(Q1).

* Press space on an item.

Tree “opt("notify)
e Double click on an item

(Q1).

Note: This will also open or
close items that have chil-
dren!

* Press space on an item.

Note that MenuButton and RichText don't ever send WidgetEvents. They send MenuEvents instead.

7.2.3.2.3. ValueChanged WidgetEvent

68

Map Key Value Type Valid Values Description

EventReason string VaueChanged (constant)

A ValueChanged WidgetEvent is sent by most interactive widgets that have a value that can be
changed by the user. They al require the notify option to be set to send this event.

Widgets that have the concept of a "selected item"” like SelectionBox, Table, or Tree don't send this
event - they send a SelectionChanged WidgetEvent instead. One exception to this rule is the
Multi SelectionBox which can send both events, depending on what the user did.

Widget Type Widget Options Action to Trigger the Event

Multi SelectionBox “opt("notify) Toggle an item's on/off state:

¢ Click on an item's checkbox

(Q1).

e Press space on an item.

CheckBox “opt("notify) Toggle the on/off state;

* Single click the widget (Qt).
* Press space on the widget.

RadioButton “opt("notify) Set this RadioButton to on:

7.2.3. Event Reference

Widget Type

Widget Options

Action to Trigger the Event

» Singleclick the widget (Qt).
» Press space on the widget.

No event is sent when the but-
ton's status is set to off because
another RadioButton of the
same RadioButtonGroup is set
to on to avoid generating a lot
of useless events: Only the on
case is relevant for most YCP
applications.

e TextEntry

¢ MultiLineEdit

“opt("notify)

Enter text.

ComboBox

“opt("notify)

e Select another value from
the drop-down list:

* Open the drop-down list
and click on one of its
items (Qt).

e Open the drop-down list,
use the cursor keys to
move the selection and
press space or return to
actually accept that item.

Simply opening the
drop-down list and mov-
ing the cursor around in
it (i.e. changing its se-
lection) does not trigger
this event.

¢ Enter text (with

“opt("editable)).

IntField

“opt("notify)

Change the numeric value:

¢ Enter anumber.

e Click on the up button (Qt).

¢ Click on the down button
(Q1).

e Press cursor up in the wid-
get (NCurses).

e Press cursor down in the
widget (NCurses).

Slider

“opt("notify)

*« Movethedider.

¢ Enter a number in the em-
bedded IntField.

« Use one of the embedded
IntField's up / down button.

PartitionSplitter

“opt("notify)

* Movethedider.
* Enter anumber in one of the
embedded IntFields.

69

7.2.3. Event Reference

Widget Type Widget Options Action to Trigger the Event

 Use one of the embedded
IntFields' up / down button.

7.2.3.2.4. SelectionChanged WidgetEvent

Map Key Value Type Valid Values Description
EventReason string SelectionChanged (constant)

A SelectionChanged WidgetEvent is sent by most widgets that have the concept of a"selected item"
like SelectionBox, Table, or Tree when the selected item changes.

Note that the MultiSelectionBox widget can send a SelectionChanged event, but also a
VaueChanged WidgetEvent depending on what the user did. This is one reason to keep Selection-
Changed and ValueChanged two distinct events: Widgets can have both concepts which may be
equally important, depending on the Y CP application.

The ComboBox never sends a SelectionChanged event. It only sends VaueChanged WidgetEvents.

Therationale behind this is that merely opening the drop-down list without actually accepting one of
itsitems isjust a temporary operation in a separate pop-up window (the drop-down list) that should
not affect the Y CP application or other widgets in the same dialog until the user actually accepts a
value - upon which event a ValueChanged WidgetEvent is sent.

Widget Type Widget Options Action to Trigger the Event
SelectionBox Select another item:

Qt: “opt("notify)
NCurses: L

m

me

dia
“opt("notifyte)

e Click on anitem (Qt).

e Press cursor up in the wid-
get.

e Press cursor down in the
widget.

Qt: “opt("notify)
NCurses: “opt("notify, immediate)
Table “opt("notify, immediate) Select another item:

e Click onanitem (Qt).

e Press cursor up in the wid-
get.

e Press cursor down in the
widget.

Tree “opt("notify) Select another item:

e Click onanitem (Qt).

e Press cursor up in the wid-
get.

e Press cursor down in the
widget.

Multi SelectionBox “opt("notify) Select another item:

e Click on an item's text (not
on the checkbox) (Qt).

70

7.2.3. Event Reference

Widget Type Widget Options Action to Trigger the Event

e Press cursor up in the wid-
get.

e Press cursor down in the
widget.

7.2.3.2.5. MenuEvent

Map Key Value Type Valid Values Description
EventType string MenuEvent (constant)
ID any

The ID of the menu
item the user selected
or the href target (as
string) for hyperlinksin
RichText widgets.

Notice: This is not the
widget ID, it is a menu
item or hyperlink ID in-
side that MenuButton
or RichText widget!

A MenuEvent is sent when the user activates a menu entry in a MenuButton or a hyperlink in a
RichText widget.

Since the ID of the MenuButton or RichText widget isirrelevant in either case, this is not another
subclass of WidgetEvent; the ID field has different semantics - and remember, the ID field is the
only thing what UserInput() returns so thisis particularly important.

For most Y CP applications this difference is purely academic. Simply use the ID and treat it like it
were just another button's ID.

No notify option is necessary for getting this event. Both MenuButton and RichText deliver
MenuEvents right away.

7.2.3.2.6. TimeoutEvent

Map Key Value Type Valid Values Description
EventType string TimeoutEvent (constant)
ID symbol “timeout (constant)

A TimeoutEvent is sent when the timeout specified at WaitForEvent() or TimeoutUserlnput() is ex-
pired and there is no other event pending (i.e. there is no other user input).

Polllnput() never returns a TimeoutEvent; it simply returns nil if there is no input.

7.2.3.2.7. CancelEvent

Map Key Value Type Valid Values Description
EventType string Cancel Event (constant)
ID symbol “cancel (constant)

71

7.2.3. Event Reference

A CancelEvent is an event that is sent when the user performs a general "cancel” action that is usu-
ally not part of the Y CP application.

For the Qt UI, this means he used the window manager close button or a specia key combination
like Alt-F4 to close the active dialog's window. For the NCurses Ul, this means he hit the ESC key.

User interface style hint: It isusually agood idea for each dialog to provide some kind of "safe exit"
anyway. Most popup dialogs (at least those that have more than just a simple "OK" button) should
provide a "Cancel" button. If you use the widget ID “cancel for that button, Cancel Events integrate
seamlessly into your Y CP application.

"Main window" type dialogs should have an "Abort" button or something similar. If you don't use
the widget ID “cancel for that button, don't forget to handle “cancel or "CancelEvent" like that
"Abort" button. The user should always have a safe way out of adialog - preferably one that doesn't
change anything. Don't forget to add a confirmation popup before you really exit if there are un-
saved data that might get lost!

7.2.3.2.8. KeyEvent

72

KeyEvents are specific to the NCurses Ul. They are not intended for general usage. The idea is to
use them where the default keyboard focus handling is insufficient - for example, when the logical
layout of a dialog is known and the keyboard focus should be moved to the logically right widget
upon pressing the cursor right key.

Widgets deliver KeyEventsif they have " opt (keyEvent) set. Thisisindependent of the noti-
fy option.

It is completely up to the Ul what key presses are delivered as key events. Never rely on each and
every key pressto be delivered.

Map Key Value Type Valid Values Description
EventType string KeyEvent (constant)
ID string The key symbol of this

event in human read-
CuspbeRighh. This is what
Clsesthauuin() returns.

KeySymbol string The key symbol of this
event in human read-
CusbbeRtght. This is noth-
CuiisgrDswwnan alias for
F1"ID", but with this alias
a |you can easily find out
A|if thisis a key event at
..|the same time as you
retrieve the key sym-
bol: No other events
than KeyEvent have
thisfield.

FocusWidgetI D any The ID of the widget
that currently has the
keyboard focus. Unlike
a WidgetEvent, this is
not the same as"ID".

FocusWidgetClass string TextEntry Selection-|The class (type) of the
Box ... widget that has the key-

7.2.3. Event Reference

Map Key Value Type Valid Values Description
board focus.

FocusWidgetDebugL a [string
bel The label (more gener-
al: the widget's shortcut
property) of the focus
widget - in human read-
able form without any
shortcut markers ("&"),
maybe abbreviated to a
reasonable length.

This label is trandated
to the current locae
(the current user's lan-

guage).

This is intended for de-
bugging so you can eas-
ily dump something in-
to the log file when you
get an event.

Wigets that don't have a
label don't add thisfield
to the event map, so
make sure you use a
reasonable default
when using a map |ook-
up for this field: Don't
use nil, use "" (the emt-
py string) instead.

Even though at first glance the KeyEvent map looks very much like the WidgetEvent's map, it is
different in how the "ID" field is used: A KeyEvent uses it to return the key symbol, while a Wid-
getEvent returns the widget ID. Thisisintended to integrate more seamlessly with common usage of
Userlnput(): A YCP application can simply use Userlnput() and check for a return value "Cursor-
Right" etc. - which should not cause any trouble unless somebody uses this as a (badly chosen) wid-
get ID.

7.2.3.2.9. DebugEvent

Map Key Value Type Valid Values Description
EventType string DebugEvent (constant)
ID symbol “debugHotkey (constant)

A DebugEvent is an event type especially intended for debugging Y CP code. It is sent when the user
presses a special key combination.

For the Qt UlI, this event is sent upon pressing Alt-Ctrl-Shift-D. Thereis currently no such key com-
bination in the NCurses Ul.

Use DebugEvents event to dump additional data to the log file or to open special debugging popup
dialogs - but never do anything with it that might turn out to be a security hazard. Remember, even
though the key combination is really awkward, sooner or later some users will get to know it, and
they will experiment.

73

74

Chapter 8. Installation Frameworks
and Installation Process

8.1. Product Installation Control
8.1.1. Functionality

The product control enables customization of the installation makes it possible to enable and disable
features during installation in the final installed product. It controls the workflow and what is really
shown to the user during installation.

Beside workflow configuration, other system variables are configurable and can be predefined by
the system administrator,to name a fre the software selection, environment settings such as lan-
guage, time zone, keyboard can be configured and would override default variables provided with
shipped products.

Theidea of having a pre-defined installation workflow and pre-defined system settings is the middle
ground between manual installation and automated installation.

The product configuration file is provided in text on the installation media and defines various set-
tings needed during installation. The following isalist of supported configuration options:
* Workflow

Replaces the static workflow list with a configurable list using the product configuration file.
Entire sections of the workflow can be skipped.

For example, it will be possible to set the language variable in the configuration file and if the
installation language is to be forced for some reason, i.e. IT department wants to force French
installations in Quebec, Canada, then the entire dialogue is skipped. If the IT department isto re-
commend some settings but still give the user the choice to change the default settings, the lan-
guage dialogue will be shown with Frenchy presel ected.

If non of the above optionsis used, the default dialogue settings is shown.

» Proposals
As with the workflow, proposals are also be configurable. For example, certain products would
skip some proposals. In the proposal screen the pre-configured settings can be shown with the
possibility to change them or with inactive linksif the configuration is to be forced.

e System Variables

Lets the user define system variables like language, keyboard, time zone, window manager, dis-
play manager etc. The defined variables will be used as defaultsin the respective dialogues.

» Package Selections and additional individual packages
Define what base package selection and add-on selections should be used for the installation.
Additionally provide the possibility to define a list of additional packages. All packages and se-

lections can be selected depending on the architecture using a specia architecture attribute in the
configuration file.

* Partitioning
Integrates flexible partitioning into configuration file, instead of the separate file currently used.

» Scripting and Hooks

75

8.1.2. Implementation

To customize installation further more, hooks and special slots can be defined where the user
can execute scripts. For example, scripts can be executed at the very beginning of the installation
(After processing the configuration file), in the installation system before initial boot, in the ch-
root-ed environment and after initial boot and before/after every step in the workflow. Scripting
languages supported during installation are currently Shell, Perl.

8.1.2. Implementation

The control file is implemented in simple structured XML syntax which so far has been used for
automated installation . The XML structure used can be mapped easily to YaST data structures and
all datatypesavailablein YaST are supported for easy data access and manipulation.

The primary use of the control file is to configure the workflow of the installation and it offers the
possibility to predefine a certain setup, but it also defines product installation features and other
product related variables.

- Note

Note that the control file is not an optional tool to help customize installation, it is re-
quired during installation and without the file, installation may fail or lead to unexpec-
ted results. YaST provides a default and general control file which is always available
in the system. The general and product independent control files is installed by the
package yast2-installationin/ usr/ shar e/ YaST2/ control /control . xm .

During installation, linuxrc searches for the a file named cont r ol . xnl on the installation medi-
um (CD, NFS, FTP..) and copies the file into the installation system and makes the file available to
YaST. YaST then starts and looks for the control file in 3 location before it starts with the installa-
tion workflow:

e J/control.xm

Usually the file is in top directory after it has been copied by linuxrc and during initial installa-
tion phase.

e J/var/lib/YaST2/control.xmn

After reading the file, and before second installation phase, the control file is copies from the top
directory to/ var/1i b/ YaST2/ control . xm

* /[usr/share/ YaST2/ control/control.xnl
This is the location where yast2-installation installs the file in al products. The file is the same
on all products.

One of the main reasons for using the control is to provide non YaST developers to change the in-

stallation behavior and customize various settings without the need to change Y aST packages.

The control file for the various product shall therefore be maintained out of the YaST devel opment
trees and in separate SUSE internal and product specific packages.

8.1.3. Configuration
8.1.3.1. workflows

Using the contral file, multiple workflows can be defined for different modes and installation stages.
Thus, the element workflows in the control file evaluatesto alist of workflows.

76

8.1.3. Configuration

Beside defining what YaST clients should be executed during installation, the workflow configura-
tion also let you specify the wizard steps and how they should appear during graphical installation.

A workflow list element is a map with the following elements:

label

The label of the workflow as it appears on the left side of the wizard. For example Base Installa-
tion

defaults
The default arguments to the clients. Thisisamap element.
stage

This options defines the stage or phase of installation.. Possible values are initial for the initial
stage and continue for the workflow of the installation after reboot

mode

Definesinstallation mode. Several modes are available, most important modes are:

e instalation
e update

e autoinst
modules

Thisisthe actual workflow and isalist of elements describing the order in which the installation
should proceed.

A module element is a map with the following configuration options:

* name: The name of the module. All installation clients and modules have a unified prefix
(inst_) which can be ommited here. For example, if the YaST file for the module is called
inst_test, then the namein the control fileistest

« label: The label of the module in the step dialog. Thisis an optional element. If it is not set,
the label of the previous module is used.

e arguments. The arguments for the module is a comma separated list which can accept
booleans and symbols.

The following listing shows atypical installation workflow:

<wor kfl ows config:type="list">
<wor kf | ow>
<l-- 'label' is what the user will see -->
<| abel >Base Installation</I|abel >
<!-- default settings for all nodules -->
<def aul t s>
<I-- argunents for the clients -->
<ar gurment s>f al se, f al se</ ar gument s>
<I-- allowed architectures "all", "i386", "i386,ia64,x86_64" -->

<archs>al | </ archs>
</ defaul t s>
<stage>i ni ti al </ st age>
<node>i nstal | ati on, updat e</ node>
<modul es config:type="list">
<modul e>
<nane>i nf o</ nane>
<ar gunent s>f al se, true</ ar gunent s>
</ modul e>
<nmodul e>
<name>pr oposal </ name>
<arguments>true, true, "ini </ argunments>

77

8.1.3. Configuration

<l abel >I nstal | ati on Settings</| abel >
</ modul e>
<nodul e>
<nane>do_r esi ze</ name>
<updat e confi g:type="bool ean">f al se</ updat e>
<ar chs>i 386, x86_64, i a64</ archs>
<l abel >Perform I nstal | ati on</| abel >
</ modul e>
<nmodul e>
<name>pr epdi sk</ name>
<l-- Multiple nodules with the sane 'label' will be
col l apsed to one single user-visible step.
The step is considered finished when the |ast nodul e

with the sane 'label' is finished. -->
<l abel >Perform I nstal | ati on</| abel >
</ nodul e>
<nodul e>

<name>ki ckof f </ name>
<l abel >Perform I nstal | ati on</| abel >
</ nodul e>
<nodul e>
<name>r pncopy</ name>
<l abel >Perform I nstal | ati on</| abel >
</ nodul e>
<nodul e>
<name>f i ni sh</ name>
<l abel >Perform I nstal | ati on</| abel >
</ nodul e>
</ modul es>
</ wor kf | ow>

8.1.3.2. Proposals

Part of the installation workflows are proposal screens, which consists of group of related configura-
tion settings. For example Network, Hardware and the initial Installation proposal.

If you with for some reason to add or modify a proposal, which is discourged because of configura-
tion dependencies, then this would be possible using the control file.

<proposal >
<t ype>net wor k</ t ype>
<st age>conti nue, nor mal </ st age>
<proposal _nodul es config:type="list">
<proposal _nodul e>l an</ pr oposal _nodul e>
<pr oposal _nodul e>dsl </ pr oposal _nodul e>
<pr oposal _nodul e>i sdn</ pr oposal _nodul e>
<proposal _nodul e>nmodenx/ proposal _nodul e>
<proposal _nodul e>pr oxy</ proposal _nodul e>
<pr oposal _nodul e>r enot e</ pr oposal _nodul e>
</ proposal _nodul es>
</ proposal >

The proposal in the above listing is displayed in the so called continue mode which is the second
phase of the installation. The proposal consists of different configuration options which are con-
troled using a special API.

Currently, proposals names and captions as fixed and cant be changed. It is not possible to create a
special proposal screen, instead those avail able should be used: network, hardware, service.

In the workflow, the proposals are called as any workflow step with an additional argument identify-
ing the proposal screen to be started. ("net for network, "hw for hardware and “service for service
proposals. The following examples shows how the network proposal is called as a workflow step:

<modul e>

<l abel >Net wor k</ | abel >

<nanme>pr oposal </ name>

<argument s>true, true, " net </ ar gunent s>
</ nmodul e>

78

8.1.3. Configuration

8.1.3.3. Installation and Product Variables

It is possible to define some installation variables (language, timezone, keyboard,..) and force them
in the proposal. User will still be able to change them however.

The following variables can be set:

e Timzeone
* Language
» Keyboard

e Auto Login (not recommended for multi-user environments and server installations)
* 10 Scheduler
Defaultis as.

» Desktop Scheduler

the following example shows all options above

<gl obal s>
<enabl e_aut ol ogi n confi g: t ype="bool ean" >t rue</ enabl e_aut ol ogi n>
<l anguage>de_DE</ | anguage>
<ti mezone>Canada/ East ern</ti nezone>
<use_deskt op_schedul er config:type="bool ean">true</use_deskt op_schedul er >
<i o_schedul er >as</i o_schedul er >
</ gl obal s>

8.1.3.4. Software

Using this section in the control file you can change the software proposal during installation.

By default, the software proposal is generated depending on the available space in the system. If
enough space is available, a fairly large selection of packages and add-on package groups is auto-
matically selected. This behavior is controlled by the selection_type element in the control file.

The default value for the above element is auto. To force a selection which can not be changed by
the user, the value fixed has to be used.

If afixed software selection is desired, then the fixed selection name has to be specifed in the con-
trol file. This selection must be a base selection. To specify the name of the base selectiont to be
forced, use the base_selection element.

The list of base selections can be found on the first CD of the product in the directory suse/
set up/ descr or by using the following command (The example shows the list of selections for
S ES9):

To switch from desktop based proposals to the normal behavior of software proposalsin YaST , the
software_proposal element has been introduced. Setting the value to desktop will make YaST show
adialog with Desktops to select from, i.e. KDE or Gnome. If this element is not defined, default be-
havior is assumed.

for i in "grep -1 baseconf SUSE-SLES- Version-9/CDl/suse/setup/descr/* *; do
basenane $i . sel
done

79

8.1.3. Configuration

The above will have the following output:

Ful |l -1 nstal |l ation
M ni mal +X11

M ni mal

def aul t

which matches the base selectionsin SLES9.
Additionally, you can configure how updating of packages should be performed. The following op-
tions are available:
» delete old packages
Do not delete old RPM s when updating.
» only_update selected

One can update (only update packages already installed) or upgrade (also install new packages
with new functionality). For example, SLES should do "update", not "upgrade” by default

8.1.3.5. Partitioning

If present, the partition proposal will be based on the data provided in the contral file.

8.1.3.5.1. Algorithm for space allocation

Space allocation on a disk happens in the following order. First all partition get the size allocated
that is determined by the size parameter of the partition description. If a disk cannot hold the sum of
these sizes this disk is not considered for installation. If all demands by the size parameter are ful-
filled and there is still space available on the disk, the partitions which have a parameter "percent"
specified are increased until the size demanded by by "percent” is fulfilled. If thereis still available
space on the disk (this normally only can happen if the sum of all percent values are below 100), all
partitions that are specified with a size of zero are enlarged as far as possible. If a"maxsize" is spe-
cified for a partition, al enlargement are only done up to the specified maxsize.

If more than one of the available disks is eligible to hold a certain partition set, the disk is selected
as follows. If there is a partition allocated on that disk that has its size specified by keywords "per-
cent” or by "size=0" and does not have a "maxsize" value set then the desired size for this partition
is considered to be unlimited. If a partition group contains a partition which an unlimited desired
size, the disk that maximizes the partition size for the unlimited partitionsis selected. If al partitions
in a partition group are limited in size then the smallest disk that can hold the desired sizes of all
partitionsis selected for that partition group.

If there are multiple partition groups the the partition group with the lowest number (means highest
priority) get assigned its disk first. Afterward the partition group with the next priority gets assigned
athe optimal disk from the so far unassigned disks.

8.1.3.5.2. Configuration Options

80

The following elements are global to all disks and partitions:

prefer _remove

Possible values truelfalse

8.1.3. Configuration

Default value

Description

true

If set to false the partition suggestion tries to use gaps on the disks or to re-
use existing partitions. If set to true then the partition suggestion prefers re-
moval of existing partitions.

remove _special_partitions

Possible values
Default value

Description

trueffalse
false

If set to false YaST2 will not remove some special partitions (e.g. 0x12
Compaq diagnostics, Oxde Dell Utility) if they exists on the disk even if
prefer_remove is set to true. If set to true YaST2 will remove even those
special partitions.

A Caution
Caution: Since some machines are not even bootable any

more when these partitions are removed one should really
know what he does when setting this to true

keep_partition_fsys

Possible values
Default value

Description

keep_partition_id

Possible values
Default value

Description

comma separated list of reiser, xfs, fat, vfat, ext2, ext3, jfs, ntfs, swap
Empty list

Partitions that contain filesystems in that list are not deleted even if
prefer_removeis set to true.

comma separated list of possible partition ids
Empty list

Partitions that have a partition id that is contained in the list are not deleted
even if prefer_removeis set to true.

keep_partition_num

Possible values
Default value

Description

comma separated list of possible partition numbers
Empty list

Partitions that have a partition number that is contained in the list are not
deleted even if prefer_removeis set to true.

81

8.1.3. Configuration

To configure individual partitions and disks, a list element is used with its items describing how
should the partitions be created and configured

The attributes of such a partition are determined by several elements. These elements are described
in more detail later.

L&

mount

Example

Description

fsys

Example

Description

formatopt

Example

Description

fstopt

Example

Description

label

Example

Description

General remarksto all option values
If thereisablank or aequal sign (=) contained in an option value, the values has to be

surrounded by double quotes (). Values that describe sizes can be followed by the |et-
tersK, M, G. (K means Kilobytes, M Megabytes and G Gigabytes).

<mount>swap</mount>

This entry describes the mount point of the partition. For a swap partition the
special value "swap" has to be used.

<fsys>reiser</fsys>
This entry describes the filesystem type created on this partition. Possible

Filesystem types are: reiser, ext2, ext3, xfs, vfat, jfs, swap If no filesystem typeis
given for apartition, reiserfsis used.

<formatopt>reiser<formatopt>
This entry describes the options given to the format command. Multiple options

have to be separated by blanks. There must not be a blank between option letter
and option value. Thisentry is optional.

<fstopt>acl,user_xattr<fstopt>

This entry describes the options writtento / et ¢/ f st ab. Multiple options have
to be separated by comma. This entry is optional.

<label>emil<label>

If the filesystem can have alabel, the value of the label is set to this value.

82

8.1.3. Configuration

id

Example

Description

size

Example

Description

per cent

Example

Description

maxsize

Example

Description

increasable

Example
Default

Description

disk

<id>Ox8E<id>

This keyword makes it possible to create partitions with partition ide other than
0x83 (for normal filesystem partitions) or 0x82 (for swap partitions). This make
it possible to create LVM or MD partitions on adisk.

<size>2G<size>

This keyword determines the size that is at least needed for a partition. A size
value of zero means that YaST2 should try to make the partition as large as pos-
sible after al other demands regarding partition size are fulfilled. The specia
value of "auto" can be given for the/ boot and swap partition. If autois set for a
/boot or swap partition YaST2 computes a suitable partition size by itself.

<percent>30<percent>

This keyword determines that a partition should be allocated a certain percentage
of the available space for installation on a disk.

<maxsize>4G<maxsize>

This keyword limits the maximal amount of space that is allocated to a certain
partition. This keyword is only useful in conjunction with a size specification by
keyword "percent” or by an entry of "size=0".

<increasable config:type="bool ean" >true<increasable>
false

After determining the optimal disk usage the partition may be increased if there
is unallocated space in the same gap available. If this keyword is set, the partition
may grow larger than specified by the maxsize and percent parameter. This
keyword is intended to avoid having unallocated space on a disk after partition-
ing if possible.

83

8.1.3. Configuration

Example <disk>2<disk>

Description This keyword specifies which partitions should be placed on which disks if mul-
tiple disks are present in the system. All partitions with the same disk value will
be placed on the same disk. The value after the keyword determines the priority
of the partition group. Lower numbers mean higher priority. If there are not
enough disks in the system a partition group with lower priority is assigned a sep-
arate disks before a partition group with higher priority. A partition without disk
keyword isimplicitly assigned the highest priority O.

Example 8.1. Flexible Partitioning

If in the example below the machine has three disks then each of the partition groups gets on a sep-
arate disk. So one disk will hold / var , another disk will hold /home and another disk will hold / , /

usr and / opt . If in the above example the machine has only two disks then / hone will still be
on a separate disk (since it has lower priority than the other partition groups) and / , / usr, / opt

and/ var will share the other disk.

If there is only one disk in the system of course al partitions will be on that disk.

<partitions config:type="list">

<partition>
<di sk config:type="integer">3</di sk>
<mount >/ var </ nount >
<percent config:type="integer">100</ percent >

</partition>

<partition>
<di sk config:type="integer">2</di sk>
<mount >/ </ nount >
<si ze>1G</si ze>

</partition>

<partition>
<di sk config:type="integer">2</di sk>
<mount >/ usr </ nount >
<si ze>2G</ si ze>

</partition>

<partition>
<di sk config:type="integer">2</di sk>
<mount >/ opt </ mount >
<si ze>2G</ si ze>

</partition>

<partition>

<di sk config:type="integer">1</di sk>
<nmount >/ hone</ nount >
<percent config:type="integer">100</ percent >

</partition>

</partitions>

A more complete example with other options is shown below:

<partitioni ng>
<partitions config:type="list">
<partition>
<di sk config:type="integer">2</di sk>
<mount >swap</ mount >
<si ze>aut o</ si ze>
</partition>
<partition>
<di sk config:type="integer">1</di sk>
<f st opt >def aul t s</ f st opt >
<fsys>reiser</fsys>
<i ncreasabl e confi g:type="bool ean">true</increasabl e>
<mount >/ </ nount >
<si ze>2gb</si ze>
</partition>
<partition>
<di sk config:type="integer">2</di sk>
<f st opt >def aul t s, dat a=wri t eback, noati me</f st opt >
<fsys>reiser</fsys>
<i ncreasabl e config:type="bool ean">true</increasabl e>
<mount >/ var </ nount >
<percent config:type="integer">100</ percent >
<si ze>2gb</si ze>
</partition>
</partitions>
<prefer_renove config:type="bool ean">true</ prefer_renove>
<renove_speci al _partitions config:type="bool ean">f al se</renove_speci al _partitions>
</ partitioning>

8.2. Firstboot Configuration

8.1.3.6. Hooks

It is possible to add hooks before and after any workflow step for further customization of the in-
stalled system and to to perform non-standard tasks during installation.

Two additional elements define custom script hooks:

» prescript: Executed before the moduleis called.

» postscript: Executed after the moduleis called.

Both script types accept two elements, the interpreter used (shell or perl) and the source of the
scripts which is embedded in the XML file using CDATA sections to avoid confusion with the
XML syntax. The following example shows how scripts can be embedded in the contral file:

<modul e>
<name>i nf o</ nane>
<ar gurent s>f al se, t rue</ ar gunent s>
<prescript>
<interpreter>shell </interpreter>
<source>
<! [CDATA[#! / bi n/ sh
touch /tnp/ anas
is]cho anas > /tnp/anas
>
</ sour ce>
</ prescript>
</ modul e>

8.2. Firstboot Configuration

The YaST firstboot utility (YaST Initial System Configuration), which runs after the installation is
completed, lets you configure the Novell Linux Desktop system before creation of the install image
so that on the first boot after configuration, users are guided through a series of steps that allow for
easier configuration of their desktops. YaST firstboot does not run by default and has to be con-
figured to run by the user or the system administrator. It is useful for image deployments where the
system in the image is completely configured. However, some final steps such as root password and
user logins have to be created to personalize the system.

The default workflow for the interface is as follows:

1. TheWelcome screen
2. ThelLicense Agreement

3. Daeé& Time

4. Network

5. Root Password
6. User Account
7. Hardware

8. Finish

85

8.2.1. Enabling Firstboot

During firstboot, two additional dialogs are shown for writing the data and running SuSEconfig
which require no user interaction.

8.2.1. Enabling Firstboot

Firstboot is disabled by default. The yast2-firstboot package is not part of any software selection and
has to be installed individually. During the Installation, click Software in the Installation Settings
screen, then select the yast2-firstboot package in the Rest selection list.

Install the product on a master box, making sure that you install the firstboot package.

Create the empty file / et ¢/ reconfi g_syst em This file will be deleted when firstboot
configuration is completed. This can be done by issuing the commnd: touch /
etc/reconfig_system

Enable the firstboot service using the YaST runlevel editor, or directly on the command line
using the following command: chkconfig fir stboot on

When the system comes up after a shutdown, the firstboot configuration utility will be started and
the user will be presented with the configuration screens.

There are different ways the firstboot configuration utility can be used, one of them for creating in-
stallation images. The following step by step description shows how an image can be created after
firstboot has been enabled.

Boot the master box using the rescue boot option.
Configure network in the rescue system.
Mount an NFS exported directory to /mnt.

Run dd if=/dev/hda of=/mnt/image.bin count=4000000 to store the master box's hard disk
image onto the NFS server.

And toinstall theimage you have just created:

©o u &~ w BN

Boot a user's machine using the rescue boot option.
Configure network in the rescue system.

Mount the NFS exported directory to /mnt.

Run dd if=/mnt/image.bin of=/dev/hda count=4000000.
Remove the boot media and boot the user's machine.

After firstboot comes up, configure the date and time, root password, and user account and any
other additional settings.

The Post Configuration Utility (firstboot) expects the X server to be configured. If no X server is
configured, it will automatically start in text mode.

8.2.2. Customizing YaST Firstboot

8.2.2.1. Customizing Messages

86

The utility has standard and translated texts in the default setup. If you want to change those texts,

8.2.3. Scripting

use the firstboot configuration file/ et ¢/ sysconfi g/ fi r st boot .

Thisfile lets you change the text of the following dialogs:

* Welcome screen
» License Agreement

» Finishdidog

To do this, change the values of the respective variables
(FIRSTBOOT_WELCOME_FILE,FIRSTBOOT _LICENSE FILE , and FIRST-
BOOT_FINISH_FILE) to the full path of a plain or rich text formatted text file. This will give you
dialogs with customized text. If the references files are in plain text, they will be shown as such
automatically. If they contain any markup language, they will be formatted as rich text.

The default license text shown is taken from the file/ var /| i b/ YaST2/ i nf 0. t xt whichisthe
EULA of the product being installed.

8.2.2.2. License Action

The variable LICENSE_REFUSAL_ACTION sets the action to be executed if the user does not ac-
cept the license. The following options are available;

* halt: system is halted (shut down)
» continue: continue with configuration

» abort: Abort firstboot configuration utility and continue with the boot process.

8.2.2.3. Release Notes

Use the configuration option FIRSTBOOT_RELEASE NOTES PATH to show release notes in the
target language. The value of the option should be a path to a directory with files using language de-
pendent naming (RELEASE- NOTES. { | anguage} . rt f). For english, the following file will be
needed: RELEASE-NOTES.{language} .rtf.

The origind release notes for the installed product availabe in /
usr/ shar e/ doc/ r el ease- not es can be used as an example.

8.2.2.4. Customizing Workflow Components

The default firstboot workflow can be controled using one single file which is a subset of the con-
trol.xml file used to control the complete installation. The firstboot control file consists of workflow
and proposal configurations and can be used to add or remove configuration screens depending on
the end configuration of the system. The file firstboot.xml is installed with the yast2-firstboot pack-
age and can be found a the following location: /

usr/ share/ YaST2/ control /firstboot.xm .

This file can be modified to match the post installation requirements of the product in question. In
addition to the default and pre-installed components, custom screens can be added to enable maxim-
al flexiblity during post installation. For more information about the syntax of the control file, see
the document titled “Product Installation Control”.

8.2.3. Scripting

You can add scripts to be executed at the end of the firstboot configuration to customize the system
depending on user input or the environment of the machine. Scripts should be placed in /

87

8.3. APIfor YaST2 installation pro-
posal

usr/share/firstboot/scripts or in a custom location that can be set using the /
et c/ sysconfig/firstboot configurationfile.

8.3. API for YaST2 installation proposal
8.3.1. Motivation

After five releases, YaST2 is nhow smart enough to make reasonable proposals for (near) every in-
stallation setting, thus it is no longer necessary to ask the user that many questions during installa-
tion: Most users simply hit the [next] button anyway.

Hence, YaST2 now collects all the individual proposals from its submodules and presents them for
confirmation right away. The user can change each individua setting, but heis no longer required to
go through al the steps just to change some simple things. The only that (currently) really hasto be
gueried is the installation language - this cannot reasonably be guessed (yet?).

The new YaST2 installation includes the following steps:

e (Minimal) hardware probing - no user interaction required

» Language selection - user picks installation language

» Installation proposal - very much like the old installation summary just before the real installa-
tion started, only this time the user CAN change settings by clicking into the summary (or viaa
separate menu as a fallback).

e Create/ format partitions according to proposal / user selection - no user interaction required

» Ingtall software packages from CD / DVD / other installation media

After this, al that is remained left is basic system configuration like:

e X11
* Network interface(s)
* Network services

» Additional hardware (printer, sound card, scanner, ...)

8.3.2. Overview

88

YaST?2 installation modules should cooperate with the main program in a consistent API. General

usage:

* inst_proposa (main program) creates empty dialog with RichText widget

* inst_proposal calls each sub-module in turn to make proposal

* user may choose to change individual settings (i.e., clicks on a hyperlink)

o inst_proposal starts that module's sub-workflow which runs independently. After this,
inst_proposal tells all subsequent (all?) modules to check their states and return whether a

change of their proposal is necessary after the user interaction.

* main program calls each sub-module to write the settings to the system

8.3.4. API functions

8.3.3. The Dispatcher Interface

Each submodule provides a function dispatcher that can be called with 'CallFunction()'. The func-
tion to be called is passed as a parameter to this dispatcher. Parameters to the function are passed as
another parameter in a map. The result of each call is a map, the contents of which depend on the
function called.

The reason for this additional overhead is to provide extensibility and reusability for the installation
workflow: A list of submodules to be called is read from file. This requires, however, that no expli-

cit 'mod::func()' calls are used in 'inst_proposal.ycp'. Rather, the list contains the name of the sub-
module. Since each submoduleisrequired to provide an identical AP, thisis sufficient.

Example 8.2. Proposal Example

Proposal isto call

e input_devices (keyboard, mouse)
* partitioning

» software selection

» boot_loader

* timezone

inst_proposal calls

map result = Call Function (input_devices("MakeProposal", $["force_reset" . fal se,
'l anguage_changed": false]));
map resul T = Cal | Function (partitioning ("MakeProposal", $["force_reset" . fal se,

Ianguage changed false 1));

If the user clicks on the hyperlink on "input_devices' in the proposal display, inst_proposal calls:

map result = Call Function (input_devices("AskUser", $["has_next": true]));

8.3.4. API functions

- Note

If any parameter is marked as "optional", it should only be specified if it contains a
meaningful value. Don't add it with a'nil' value.

The dispatcher provides the following functions:

* MakeProposa
o AskUser
» Description

Write

89

8.3.5. Dummy Proposal

8.3.5. Dummy Proposal

90

Use this as a tenplate for other proposal dispatchers.

Don't forget to replace all fixed values with real

See also file proposal -API.txt for details.

/**
* Modul e: proposal _dummy. ycp
*
* $Id: dummy_proposal .ycp,v 1.1 2004/02/27 02:37:39 nashif Exp $
*
* Aut hor: Stefan Hundhamer <sh@use. de>
*
* Pur pose: Proposal function dispatcher - dunmy version.
*
*
*
*
*

textdonmain "installation";

string func

= (string) WM : Args(0);
param = (map) WM : Args(1);

val ues!

map
map ret $[1;
if (func == "MakeProposal")
{
bool ean force_reset = paran"force_reset"]:fal se;
bool ean | anguage_changed = parani"| anguage_changed"] : f al se;
I/ call sonme function that makes a proposal here:
Il
/1 DummyMbd: : MakeProposal (force_reset);
/1 Fill return map
ret =
“raw_proposal " : [
"proposal item #1",
"proposal item #2",
"proposal item #3"
"war ni ng" " This is just a dummy proposal!",
"war ni ng_l evel " : bl ocker
} .
else if (func == "AskUser")
{
bool ean has_next = paranf"has_next"]:fal se;
// call sonme function that displays a user dialog
/'l or a sequence of dial ogs here:
Il
/| sequence = DummyMod: : AskUser (has_next);
/1 Fill return map
ret =
"wor kf | ow_sequence": " next
} : .
else if (func == "Description")
/Il Fill return map.
Il
/1 Static values do just nicely here, no need to call a function.
ret =
/1 this is a heading
"rich_text_title" : _("Dummy"),
/1 this is a nenu entry
"menu_title" : _("&Dummy"),
"id" ;o "dummy_stuff”
13
}) .
else if (func == "Wite")
/1 Fill return nap.
/1
ret =
$
"success" : true
}
return ret;

Chapter 9. YaST Development And
Tools

9.1. YaST2 Development Tools

This document is a user's guide to the YaST2 devtools (short for "development tools'), a utility col-
lection to make developing YaST2 code easier - C++ aswell as YCP.

9.1.1. Quick Start

* Ingtall the yast 2- devt ool s RPM or check out the devt ool s module from the YaST2
CVSand build and install it:

cd yast2 # your YaST2 CVS working directory
cvs co devtools

cd devtool s

make -f Makefile.cvs

make

sudo neke install

» Seethe Migration how to change your C++ or Y CP module.
» Build and use your package as before.

» If make package complains, fix the complaints. For atempoarary package to check whether
or not bui | d works with your changes, use "nake package-| ocal " - but never checkina
packageto/ wor k/ sr ¢/ done that you created this way!

9.1.2. What is it?

The YaST2 devtools are an add-on to the classic automake / autoconf environment YaST2 used to
use.

Since the toplevel Makef i | e. amis pretty much the same throughout all YaST2 C++ or YCP
modules yet contains more and more specialized make targets, thistoplevel Makef i | e. amisnow
automatically generated.

The only thing that is (or, rather, "should be") different in al those toplevel Makefi | e. amfilesis
the"SUBDI RS =" line. Thislineis moved to a SUBDI RS in the package's toplevel directory, much
like RPMNAME, VERSI ON, MAI NTAI NER etc. - the rest of Makefi | e. amis copied from a com-
mon path / usr/ shar e/ YaST2/ dat a/ devt ool s/ admi n. Thus, changes that should affect all
of YaST2'stoplevel Makef i | e. amfiles are much easier to do and all YaST2 modules can benefit
from them without the need to change (i.e. cvs up, edit,cvs ci) al of over 85 individual files.

Thisimplies, of course, that the toplevel Makef i | e. amis no longer stored in the CV'S repository
sinceit is now automatically generated.

On the downside, this of course implies that the files and scripts required for this new automagic are
available at build time - i.e. on each YaST2 devel oper's development machine as well asin the build

environment. Thus, you will need to either install the appropriate RPM or build the devtools manu-
ally - see the Quick Start section for details.

9.1.3. Migration

If you haven't done that yet, install the devtools - see the Quick Start section for details.

If you are not sure, check / usr/ shar e/ YaST2/ dat a/ devt ool s - if you don't have that dir-

91

92

9.1.3. Migration

ectory, the devtools are not installed.

You can simply usethedevt ool s- mi gr at i on script that comes with the devtools package:

cd yast 2/ nodul es/ mypackage
y2t ool devtool s-migration
CVs Ci

This script performs the following steps:

» Goto your package's toplevel directory:

cd yast 2/ nodul es/ nypackage

e Create aSUBDI RS file from your existing Makef i | e. am

- Note

You can do without that SUBDI RS file if you want to include all subdirectories
that haveaMakef i | e. amin alphabetical order anyway):

grep 'SUBDIRS Makefile.am| sed -e 's/SUBDIRS *= *//' >SUBDI RS

Getting rid of the "SUBDI RS = " prefix is not exactly mandatory (the devtools
are forgiving enough to handle that), but recommended.

* Add that new SUBDI RS file to the CVS repository:

cvs add SUBDI RS

e Getridof theold Makef i | e. amboth locally and in the CV S repository - thisfile will be auto-
matically generated from now on:

cvs rm-f Makefile.am

o Get rid of the old copyright notices (COPYI NG, COPY-
RI GHT. { engl i sh, german, french}) both locally and in the CV S repository:

cvs rm-f COPYlI NG COPYRI GHT. {engl i sh, french, ger man}

Those files will automatically be added to the tarball upon nake package, make di st and
related commands.

e Add Makefil e.amto the . cvsi gnor e file since it will be automatically generated from
now on (otherwise "cvs up” will keep complaining about it):

echo "Makefile.am' >>. cvsignore

e Edit your . spec. i n file. Locate the neededf or bui | d lineand add yast 2- devt ool s to
it:
Vi *.spec.in
‘(I' ocate "neededf or bui | d")
(add "yast 2-devt ool s")

(save + quit)

OK, that was the wimp version. Here is the freak version:

perl -p -i -e 's/neededforbuil d/ neededforbuild yast2-devtools/' *.spec.in

9.1.4. Translation (po) Modules)

» Addthelinethat createsthetoplevel Makefi | e. amtoyour Makefil e. cvs:

vi Makefile.cvs

(locate "acl ocal ")

(add a new | ine above this:)
[tab] y2tool y2automake
(save + quit)

Again, afreak version for this:

perl -p -i -e "print "\ty2tool y2autonake\n" if /aclocal/' Makefile.cvs

The new Makef i | e. cvs should look like this:

all:
y2t ool y2aut onake
autoreconf --force --install

e Double-check what you just did and check it into the CVS when everything looks OK. "cvs
up" should print something like this:

M . cvsi gnore

R COPYI NG

R COPYRI GHT. engl i sh
R COPYRI GHT. french
R COPYRI GHT. ger man
R Makefil e.am

M Makefile.cvs

A SUBDI RS

M nyproj ect. spec.in

"cvs di f f "should print something like this:

I ndex: .cvsignore
“confi g.log

acl ocal . m4
+Makefil e.am
cvs server: Makefile.am was renoved, no conparison avail able
I ndex: Makefile.cvs
' aI l:
+ y2t ool y2aut onake

autoreconf --force --install

cvs server: SUBDIRS is a new entry, no conparison avail able
I ndex: nmyproj ect.spec.in

“# neededf orbui | d autoconf automake ...
+# neededf orbuil d yast 2-devt ool s aut oconf autonake ...

Important: Don't build yet, otherwise Makef i | e. amwill be regenerated and "cvs ci" will com-
plain when trying to check all thisin.

e Check your changesin:

cvs ci

» Test-build your package locally:

make -f Makefile.cvs & make && sudo make install

Y ou should now have anew Makefi | e. am

9.1.4. Translation (po) Modules)

For YaST2 trandation modules (yast 2-trans- . . .), the Makefi | e. aminthe po subdirectory
is automatically generated as well. The strategy for that is dightly different, though: The resulting
Makef i | e. amis combined from Makefi |l e. am t op, Makefil e. am cent er, and Make-
file.am bottom The top and bottom files are used from the current project, if there is such a

93

9.1.5. create-spec: Automatic creation
of the .spec file

file; otherwise, al files are taken from / usr/ shar e/ YaST2/ dat a/ devt ool s/ adm n/ po.
The center part is always taken from there.

Add custom maeke targets or variable definitions to the top or bottom part as required. This may
only be necessary for theyast 2-t rans- . . . datamodules (e.g., keyboard, mouse, printers).

The migration script takes care of that: It migrates the po/ subdirectory, too, if thereis one - and if
thereisa Y2TEXTDOMVAI Nfilein the the project toplevel directory. For data modules, the migration
script backs up the existing Makefile.am to Makefile.am bottom (or to Make-
file.am ol d, if there already is afile named Makef i | e. am bot t o). Make sure to edit this
file and get rid of duplicate parts before checking in.

9.1.5. create-spec: Automatic creation of the . spec file

make package-local handles the file *.spec.in. The file package/ *. spec created in the time of
"make -f Makefile.cvs' is overwitten in the time of "make package(-local)" with the package/* .spec
created by y2tool create-spec. But it should have the same content.

With create-spec you can use more 'macros’ in the * .spec.in:

@HEADER-COMMENT@ writes the SUSE .spec comment

@HEADER@ writes the usual header except BuildArch:, Requires:, Sum-
mary:

@PREP@ writes %prep with %setup

@BUILD-YCP@ writes %build with usual make

@INSTALL-YCP@ writes %install with usual Y CP make install

@CLEAN@ writes %clean with removing RPM_BUILD_ROOT

So the new *.spec.in could look like:

@HEADER- COMVENT @
neededforbuild autoconf autonmake ycpdoc yast2-testsuite ...

@HEADER@

Requi res: yast2 yast 2-trans- XXpkgXX yast 2-1i b-wi zard yast 2-1i b- sequencer
Bui | dArchi tectures: noar ch
Summary: Configuration of XXpkgXX

%lescri ption

This package is a part of YaST2. It contains the necessary scripts to
configure XXpkgXX.

@PREP@

@BUl LD YCP@

@ NSTALL- YCP@

@CLEAN@

%iles
%li r @ncl udedi r @ XXpkgXX
/...

9.1.6. Overview of Paths

94

These paths are defined in your confi gur e. i n generated by y2aut oconf and substituted by
creat e- spec. That means they are accessible in all your Makefiles and can be usesinspec. i n
files.

yast2dir=%{ prefix}/share/Y aST2 not for direct use

9.1.7. Toplevel make Targets in Detail

docdir=%{ prefix} /share/doc/packag
es\$RPMNAME

ybindir=${ prefix}/lib/Y aST 2/bin
plugindir=${libdir} /Y aST2/plugin
included-

ir=${ prefix} /include/Y aST2
localedir=%{ yast2dir}/locale
clientdir=${ yast2dir}/clients
modul edir=%{ yast2dir} /modules
schemadir=%{ yast2dir} /schema
yncludedir=%{ yast2dir} /include
screonfdir=${ yast2dir} /scrconf
desktop-

dir=%{ prefix} /share/applicationsY
esFonapdiles®{ prefix} /lib/Y aST2

ydatadir=%{ yast2dir} /data
imagedir=${ yast2dir} /images
themedir=%{ yast2dir} /theme

In Makefile.am you can simply say

ybi n_PROGRAMS = y2base

for documentation

for all yast2 programs not be started by the user.

for loadable plugins

for ¢ header files

for trandations files

for ycp clients

for ycp modules

for schemafiles (autoyast, control file)

for ycp includes

for scr files

for .desktop files (former *.y2cc)

for externa programs that are yast2 components. here you
have to append servers, servers non y2, clients or cli-
ents_non_y2.

for genera data

for non theme-able images

for theme-able images (every theme must provide the same
list of images)

when you what the program y2base to be installed in ybindir. No need to change bindir or even pre-

fix.

In the files section of your spec.in file use something like this:

@crconfdir@*. scr

Remember that the asterisk is only save when using a BuildRoot (and please use a BuildRoot).

If you need adefine in a C++ file you have to passit to the compiler. Simply use

AM _CXXFLAGS = - DPLUGH NDI R=\" ${ pl ugi ndi r}\ "

in your Makefile.am.

9.1.7.1. make package-| ocal

9.1.7. Toplevel make Targets in Detail

Create atarball from your module and put it into the package/ directory. This also creates a spec

file from the .spec.infile.

9.1.7.2. make package

95

9.2. YaST2 Logging

This checks for cvs consistency (see make check-t agver si on) and whether or not you cor-
rectly tagged that version (don't forget to increase the version number in VERSI ON!), then does
everything meke package-1 ocal did.

9.1.7.3. make check-tagversion

Thisis performed by make package prior to actually creating a tarball: It checks whether or not
you correctly tagged the current version. Use "y2t ool tagver si on” to do that once you in-
creased the version number in VERSI ON.

- Note

You will very likely never call this manually.

9.1.7.4. make check-cvs-up-to-date

Thisis performed by nake package prior to actually creating a tarball: It checks whether or not
everyting in this directory tree is checked into CVS. Any modified, added or removed files make
this check fail.

- Note

You will very likely never call this manually.

9.1.7.5. make checki n-st abl e

This makes a package (i.e. it does everything "make package" does and checksit into the correct
SUSE Linux distribution.

- Note

Thisrequires/ wor k/ sr ¢/ done to be mounted viaNFS.

9.1.7.6. nake stable

Just an dliasfor "make checki n-st abl e".

9.2. YaST2 Logging
9.2.1. Introduction

During execution YaST2 components create log messages. The purpose is to inform the user or the
programmer about errors and other incidents.

The logging should be used instead of f pri ntf (stderr,...) to createlogmessages of differ-
ent types. It can be better controlled, what to log and what not, where to log and how to log.

9.2.2. Quick start

 Usey2debug() for debugging messages, y2war ni ng() for warnings and y2error () for
error messages, syntax issameaspri ntf(3).

* Sat"export Y2DEBUG=1" inyour. profil e orrun" Y2DEBUG=1 yast 2".

* Ifroot,see/var/l og/ YaST2/ y2| og, otherwise ~/ . y2I og for the output.

* Inthey2l og, entries are uniquely identified by the filename and line number.

96

9.2.4. Logging functions

9.2.3. Logging levels

There exist six different log levels denoting incidents of different importance:

0: DEBUG Debug messages, which help the programmers.

1: MILESTONE Normal log messages. Some important actions are logged. For example each
time a YaST2 moduleis started, alog entry is created.

2: WARNING Some error has occured, but the execution could be continued.

3: ERROR Some major error has occured. The execution may be continued, but probably
more errors will occur.

4; SECURITY Some security relevant incident has occured.

5: INTERNAL Internal error. Please enter into Bugzilla or directly contact the programmers.

In the default setting the levels 1-5 are logged, level 0 (DEBUG) is switched off. See the Logging

control and Environment control for more details how to control the logging and its levels.
9.2.4. Logging functions

According to the logging levels, use the following logging functions:

voi d y2debug(const char *format, ...);
void y2m | estone(const char *format, ...);
voi d y2war ni ng(const char *format, ...);
voi d y2error(const char *format, ...);

voi d y2security(const char *format, ...);
voi d y2internal (const char *format, ...);

The parameter f or mat isthe format string like the one for pri nt f (3)

9.2.5. Additional functions

9.2.5.1. Setting the logfile name

voi d y2set Logfil eNane(const char *fil enane);

This function sets the logfile name. If the name cannot be open for writing (append), it use the de-
fault logfiles. If you want to output the debug log the st derr, use"-" as the argument for the
y2setL ogfileName:

y2set Logfil eNane("-");

9.2.5.2. Universal logging functions:

voi d y2l ogger (Il ogl evel _t level, const char *format, ...);
voi d y2vl ogger (1 ogl evel _t |evel, const char *format, va_list ap);

These functions are provided probably only for those who don't want to use the regular logging
functions. For example for setting the loglevel acording to some rule.

9.2.6. Components

97

9.2.7. Lodfiles

Asthe filenames are not unique over the whole YaST2 source, you can specify the component name.
Then the pair of the component name and the filename will uniquely identify the message.

Note: | think that the filenames should be self explaining and thus unique overall the whole source.
Then the component name can be removed, but as now the filename is not unique, you can option-
ally specify the component name.

As the component is amore general property then filename, it should be same in all messagesin one

file. So for one sourcefileit is defined only once, at the beginning of the file. And because of imple-
mentation purposes (just) before the inclusion of y21 og. h:

#def i ne y2l og_conponent "y2a_nods"
#i ncl ude <ycp/y2l og. h>

9.2.7. Logfiles

The YaST2 log is written to afile. If you work as normal user, the default logfile is ~/ . y2I og. If
you work as root, the fileis/ var /| og/ YaST2/ y2I og. The logfile is created with the permis-
sions 600, since it may contain secret data when the debug level isturned on.

If the logfile cannot be open, the st der r isuseinstead.

9.2.8. Log entries

Each log entry consist of these fields:

dat e The date when the log entry has been made.

time The time when the log entry has been made.

| evel Thelog entry level. See Logging levels.

host name The hostname of host where the yast2 runs.

pi d The process ID of the yast2 process.

conponent The name of the current component. Optional and probably obsolete.
fil enane The name of the source file where the log entry has been made.
function The name of the function where the log entry has been made.
line The line number where the log entry has been made.
nessage The text of the log message.

The output format:

Hiat L8 1T 1</ ovall host nas(piid) i [Suame(i urieur on)ol 1N, BSsane t o o

Example:

2000- 10- 13 15: 35: 36 <3> behol der (2971) [ag_nodul es] Mdul es. cc(quit):22 io0=7
2000- 10- 13 15: 35: 37 <0> behol der (2971) Modul esAgent.cc(main): 23 irg=7

9.2.9. Logging control

98

y2log.h

9.2.10. Environment control

The log control uses a simple ini-like configuration file. It is looked for at /etc/YaST2/log.conf for
root and at $HOME/.yast2/log.conf for regular users.

Example log.conf file could look like:

[Log]

file = true
syslog = fal se
debug = fal se

[Debug]

YCP = true

agent - pam = true
packagenmanager = fal se

"syslog=true", which basically means remote-logging. The similar option "file=true" means use the
usual log files for logging. You could also turn those off which means no logging would be done at
all, but rather don't do that ;-)

The "debug=true" means basically the same as Y2DEBUG=1 (that envirnoment variable overrides
the log.conf settings) and that islog by default all debug messages (if not said otherwise).

You can turn debuggin on ("agent-pam=true") for a particular component (even if "debug=Ffalse")
and also turn debugging off (for the case that "debug=true").

To provide a useful example, norma developers would need something like this
$HOME/ .yast2/log.conf (and unset Y 2DEBUG):

[Debug]
YCP = true
agent - pam = true

It means turn Y CP debug messages on and also turn on some particular agent. The other debug are
in most uninteresting, so let them turned off.

During installation , define the variable "Loghost" on the command line with the log server ip ad-
dress (Loghost=192.168.1.1) and al messages will be sent to this host. If you add y2debug, debug-
ging will also be activated in log.conf.

On the server side, using syslog-ng, you can have logging per host using the following filters:

source network {
tep();
udp();

destination netnessages { file("/var/log/messages. $HOST"); }
log { source(network); filter(f_nessages); destination(netnmessages); };

9.2.10. Environment control

Additionally to the usual logfile control you can control some logging feature by the environment
variables.

Y2DEBUG By setting this variable to an arbitrary value you turn on the debug log output.
But only when entry control is not covered by the usual logfile control.

Y2DEBUGALL By setting this variable to an arbitrary value you turn on the debug log output.
Everything will be logged.

Y2DEBUGSHEL By setting this variable to an arbitrary value you turn on the debug log output
L for the bash_background processes.

Y2MAXLOGSIZ By thisvariable you can control the size of logfiles. See Logfiles for details.
E

99

9.3. Coding In YCP

M By this variable you can control the number of logfiles. See Logfiles for details.

Example: call the module passwor d with QT interface and debugging messages set to on:

bash$ Y2DEBUG=1 yast2 users

9.3. Coding In YCP

As with any other programming language, there are some rules of “DOs and DON'TS’ in YCP too.
During the development of the YaST installer the developers realized that some particular ways of
doing things are usually better than some others. Furthermore some “standards’ have been worked
out, that (if heeded) make the resulting code uniform to some extent which makes it much easier to
understand code written by other people. The following links give some hints that should ease pro-
grammerslife.

9.3.1. Coding Rules

Any fool can write code that a computer can understand. Good programmers write
code that humans can understand.
—Martin Fowler in: Refactoring, improving the design of existing code

Having multiple developers working on the same source code needs a basic set of coding rules to
adhere to. A proper code layout makesit a lot easier for others to read, understand, enhance, debug,
and clean-up code.

Having a coding style is quite common, two of the more prominent examples are The Linux kernel
coding style and the GNU coding standard

The document on hand describes how to lay our code written in Y CP. How to name your variables
and functions, how to place braces, and how to indent blocks.

Every programmer usually has her/his own style of writing code. The rules presented here might not
match your personal preferences, but will help to work on the code as ateam. Helping out and fixing
bugs will be easier with acommon coding style.

The following set of rulestries to be complete, but probably isn't.

These rules should apply to C, C++, and Y CP code alike, even though the examples use Y CP.

9.3.1.1. The file header

100

Every file must begin with a proper header. This header should be started within the first 10 lines of
thefile, so it isvisible when loading the file in an editor.

The file header must include

the file name

the file purpose summary (in oneline!)

the authors name and email address

the CVS $ld: coding-rules.xml,v 1.1 2004/10/03 16:54:44 nashif Exp $
afew lines description about the contents

The '$ld: coding-rules.xml,v 1.1 2004/10/03 16:54:44 nashif Exp $ will be replaced automatically
when the fileis handled by CVS. Don't touch this line afterwards, it's controlled by CV S then.

Do Don't

9.3.1. Coding Rules

Do Don't

/**

* File: /1 a small exanple with no version and no hint
* io.ycp /1 about the author.
* return 42;

* Modul e:

* Security configuration

*

* Summary:

* I nput and output functions.

*

* Aut hors:

& M chal Svec <nsvec@use.cz>

*

* $ld: coding-rules.xm,v 1.1 2004/10/03 16:54:44 nashif Exp $

*

* There are in this file all functions needed flor

* the input and output of security settings.

*/

9.3.1.2. Indendation

Among developers, indentation of code is one of the most heated points of discussion. There are
several 'good' ways to use whitespace when writing sourcecode, all are 'right' in some respect.

The only bad indentation is no indentation at all. To make code easy to read, a common way of us-
ing whitespaces is needed across ateam of developers:

* indent by 4 spaces
» tabsare 8 spaces
» awaysindent

Only afew lines of afile are allowed to be not indented. These are the initial comment lines of the
file header and the opening and closing braces around the code.

Do Don't
/* /* ... initial header */
initial header
*/ { /'l opening brace at start of code
{ /] opening brace at start of code /1 ny first variable, bad indentation

/1 nmy first variable, 4 spaces indentation [integer first_int_variabl e=42;

integer first_int_variable = 42; if(first_int_variabl e>42) doSonething ();
el se sonethingDifferent();
if (first_int_variable > 42) return first_int_variable;}

// 8 spaces (== 1 tab character) indentation
doSonet hing ();

el se

sonet hi ngDi fferent();

/1 final return
return first_int_variable;

} /1 closing brace

9.3.1.3. Whitespace

Whitespaces (blank, tab, and newline characters) are alowed anywhere in the code. Proper use of
whitespace does make code alot easier to read and more pleasing to the eye.

Blanks are mandatory at the following places:

» before an open parantheses

101

9.3.1. Coding Rules

» atfunction calls
e atif and while expressions
» after acomma
e at parameter listsin function calls
e atlist and map elements
» before and after abinary operator. '="is abinary operator

Newlines are mandatory at the following places:

before and after every opening brace.

before and after every closing brace.

after the initial variable declarations, before the first statement.

to separate functional groups. afunctional group isthis senseis a set of variable declarations be-
fore a group of computational statements. another example is grouping in pre-processing, com-
puting, and post-processing often used in larger modules.

Feel free to use whitespaces at other places you find appropriate.
Some explanation to the above "Don't" example:

» thereisno blank before the " (" in the if, while, and callFunction lines.

» thereisno newline to properly separate the group of variable declarations from the computation-
a statements.

e there aretwo variable declarations in theif () block. Without whitespace this isn't easily visible.

Do Don't

if (bool_flag) ... i f(bool _flag) ..
whil e(stay_in Ioo)

while (stay_in_loop) ... cal I Function(val uel, val ue2);
list a_list [1234]

cal I Function (valuel, value2); map a_map=[1: first, 2: second];

list alist =[1, 2, 3, 4];

map a_mp = [1: flrst 2:"second]; bool ean test_flag=true;

bool ean test _flag = true if (test_flag){

i nteger one=1; bool ean two_fl ag=fal se;
if (test_flag) caIIFunctlon(one two_flag);}
{

integer one = 1;
bool ean two flag = fal se;
cal I Function (one, two_flag);

9.3.1.4. Naming of variables

102

This rule should be easy if you keep in mind that other devel opers want to read and understand your
code.

General rule: Use speaking variable names. By reading the name of a variable it should be immedi-
ately clear

» what kind of value variable represents

* how thevariableis used

» probably its scope

Thereisno restriction in the length of avariable, use this fact!

To make a clear destinction of variable names vs. function names, use ' ' in variables and upper/
lower casein function names.

9.3.1. Coding Rules

while (list_index < size (probed_nodens))

a_nodem = sel ect (probed_nodens,
doSonet hi ng (a_nodem is_sparc);
list_index = list_index + 1;

list i

Do Don't
bool ean is_sparc = (architecture == "sparc" bool ean n = (architecture == "sparc");
list probed_npdens = SCR : Read (.probe. npdé list dev = SCR : Read(. probe. noden);
integer list_index = 0; integer i = 0;
map a_nodem = $[]; mp m= $[];

}{I\Iﬂi le (i<size(dev))

m = sel ect (dev,
func (m n);
i=i+1;

)5

9.3.1.5. Naming of functions

Like variables, function names should speak for
variables apply also to functions.

But instead of ' ', use mixed upper and lower case

themselves. So the above arguments for naming

to make the names 'speak'.

It is also helpful to distinguish between global and local functions. Local functions should start with
alower case letter, global functions with an upper case letter.

Do

Don't

// this is a local function
writeStringToFile (a_string, file_nane);
/1 this is a global function

gl obal _settings = Readd obal Settings ();

f1 (a_string,
gs = rgs();

file_nane);

9.3.1.6. Blocks and Braces

There are more ways to place braces around a block than there are computer languages which use '{*

and "}".

For YaST2, only two rules about braces are important;

9.3.1.7. if-then-else, while, etc.

the opening and closing brace are on the same indentation level.
the opening brace increases the indentation level by one (which equals 4 spaces).

Thisoneisredly easy, aways use ablock for if and else cases and while statements.

Do Don't

Il start of file {integer initial_index = 0;

/1 first brace doesn't have any indentation while (initial_index < 10){

{ initial _index = initial_index + 1;}
/1 4 spaces indentation return initial_index;

integer initial_index = 0;

while (initial_index < 10)
/1 incremented indentation |evel
initial _index = initial_index + 1;

return initial_index;

9.3.1.8. Comments

103

9.3.2. Examples of bad code

Comment every function with a structured comment. The comments will be used for the documenta-
tion generation. The syntax is similar to ydoc (kdoc).

/**

* Update the SCR fromthe map of all security settings
* @aramsettings a map of all security settings

* @eturn bool ean success

*/

define SecurityWite(map settings) "~ {

}

9.3.1.9. Other habits

Thisisasmall list of other things to consider when writing code.

» Superfluous whitespace in the source. This was discussed on the linux kernel mailing list, see
Kernel Traffic #103 For 19 Jan [http://kt.linuxcare.com/kernel-traffic/kt20010119_103.epl#11]
for more. For vi users, adding:

syntax on
l et c_space_errors=1

should help. In Emacs 21, set the variable show-trailing-whitespace, adso see
whi t espace. el

* Replace blanks with tabs. Since a tab character equals 8 blanks, multiple blanks should be re-
placed by tabs.

9.3.2. Examples of bad code

104

Bad Good

any ret = bool ean_function (); bool ean ret = bool ean_function ();

if (ret) if (ret)
{ {

Here the type for "r et " is known, since it is used as a boolean in the if expression. So don't use
"any" as atype declaration is you know better.

Bad Good
termfany x = nil; termx = "Enpty ();
if (bool ean_val ue) if (bool ean_val ue)
! X = "VBox (...); : X = "VBox (...);
el se .
) x = "Enpty ();

Why invent an extra"el se" case for asimple expression?

OK, for complex things where one can't say 'this will be used 90% of the time', an else-case is
needed. But then it's still better to initialize the variable with a dummy value of the expected type
(leetermx = ~Dummy();)instead of "ni | ".

http://kt.linuxcare.com/kernel-traffic/kt20010119_103.epl#11

9.4. Check YCP Syntax

Bad Good
any ret = Userlnput (); synmbol ret = Userlnput ();
return (ret == "o0k); return (ret == "o0k);

Similar to the "bool ean" example above, we know the type for "r et " in advance.

Bad Good
any|[list x = list_function () list x = list_function ()
if (x!=nil & select (x, 1) == true) if (x!=ni
&& (size (x) > 1)
(&& (x[1]:false == true))

Thisis aparticulary bad example since the code was plain wrong initially. The list variable was just
tested for "ni | " but expected to have two elements.

9.4. Check YCP Syntax
9.4.1. Quick Start

Simply invoke check_ycp with the Y CP file(s) you wish to check as arguments:

check_ycp nyfile.ycp

check_ycp *.ycp

The error messages should be self explanatory. They stick to the GNU standards for error messages,
S0 you can use your favourite editor's (e.g. Emacs) function to process them.

Most of the checks can individually be turned off. Type

check_ycp -h

for a complete list of command line options. Those options are intentionally not listed here since
such alist would inevitably be outdated before too long.

9.4.2. Why this Document?

Even though using check_ycp is pretty straightforward, some background information is useful in
order to understand what it does, its output and the limitations of this tool - in short, what you can
expect it to do and why not to blindly rely onit.

check_ycp isfar from fool proof. In fact, it is pretty dumb. It just triesto parse Y CP code ("try" is
the operative word here!) and applies various checks for obvious programming errors. Some errors
it will catch and report, many it will not. But we (i.e. the YaST2 core development team) decided
we'd rather have atool with limited capabilities than none at all.

Another reason for writing this document is pointing out why we try to enforce certain things, many
of which are because of ergonomics or mere conventions in developing as a team, not true require-
ments of YaST2 or the Y CP language.

9.4.3. Header Comment Checks

105

9.4.4. Filename Check

The YaST2 team uses a standardized file header format for YCP modules. Standard fields are in-
cluded there for various purposes - see the "why" sections of the individual checks.

Everything up to the first opening brace "{ " outside a comment is considered part of the header.
Nothing outside this portion of the fileis checked. Y ou may, however, open and close as many com-
ments as you like up to this opening brace.

Leading asterisks "* " at the start of lines are silently discarded since they are often used to beautify
multi line comments.

The comment markers themselves of course are also discarded for the checks:

o« [*
o« */
e/

9.4.4. Filename Check

What

Why

How

If present, the contents of aModul e field is checked against the current file name.

Much code gets written by copying existing code. There is nothing wrong with that (in fact, it saves
a lot of work), but when you do, please change fields accordingly - fields like Aut hor , Mai n-
t ai ner, Pur pose etc. - and the file namein Modul e.

This file name is particularly easy to check (plus, it's the only one that can reliably be checked), so
check_ycp checksit: It compares the base name (not the complete path) of the current file to what
you specified in Modul e: inthe header.

9.4.5. Author / Maintainer Entry Check

What

106

check_ycp checksthefile header for presence of at |east one of

* Author:

e Authors:

* Mintainer:

* Mintainers:

If found, each entry is checked for some contents, i.e. it may not be completely empty (but use
whitespace as you like).

The contents must include something that 1ooks like an e-mail address.

How

9.4.6. CVS Id: Marker Check

There must be at least one person to contact when there are any problems or questions about the
module. The full name is desired, but at least an e-mail address must be there to get in contact with
the maintainer or the author.

The fields are checked for presence of something like somebody @ onewher e. domai n - in fact
only for something before the at sign "@" and something with aperiod "." behind it.

9.4.6. CVS Id: Marker Check

What

How

Presence of ald CVS/ RCSidentity marker is checked, e.g.

Id nyfile.ycp,v 1.2 2001/ 02/ 14 18:04:50 sh Exp

This CVS/ RCSID isthe only way of finding out exactly what CV S revision the file has and what
change date. The file date (what | s -1 shows) is absolutely unreliable and irrelevant: This may
have changed just by copying the file around which didn't change anything.

This is important for bug tracking and for finding and fixing bugs - only when a developer knows
what version of afile has been used he has a chance to reproduce a bug - or even make sure that a
supposedly fixed bug didn't turn up again.

Presence of
1d:

is checked. There may be more characters before the closing dollar sign "$", but the exact contents
is not checked.

N

- ote
When creating a new file, it is absolutely sufficient to include the unexpanded string
("I d: ") somewhere in the file. CVS or RCS will automatically expand this to the full
ID string.

9.4.7. Translatable Messages Checks
9.4.7.1. t ext domai n Check

What

If there is any message that is marked for trandlation with _("...") , there must be at ext donai n
Statement.

The YaST2 translator module needs to know where to take the messages to be translated from. This
iswhat thet ext domai n specification does.

Technicaly onet ext domai n statement somewhere in the Y CP program would be sufficient, i.e.

107

How

9.4.8. RichText / HTML Sanity Check

include files or modules caled with Cal | Functi on() don't realy require an additional
t ext domai n specification.

However, it is highy recommended al YCP files with trandatable messages include their own
t ext domai n statement so each YCP file is self-sufficient in that regard, thus more easily reusable
for other purposes. This policy is enforced with this check.

After being stripped of all comments, the entire Y CP code is scanned for the translation marker se-
guence: An underscore immediately followed by an opening parenthesis: _(

If this sequence is found, presence of trandatable messages is assumed. If no t ext domai n stat-
ment is found there will be an error.

On the other hand, if there is no text to trandlate, at ext domai n statement is not necessary (but it
can't hurt).

Note

CEF
Theoretically the"_ (" sequence contained in aliteral string (i.e. within double quotes
"...") could falsely trigger this error, too. But if you do that, you are very likely to run
into trouble with other tools as well - most likely even the original get ext tools regu-
larly used to extract the messages for trandation. Bottom line: Don't do that.

9.4.8. RichText / HTML Sanity Check

Literal stringsin Y CP code that contains HTML tags are usually help text that will be displayed in
the YaST2 RichText widget. ThisHTML text is subjected to the sanity checks explained below.

Please notice that everything within double quotes " will be checked that contains anything surroun-
ded by angle brackets <...> - i.e. anything that looks remotely like an HTML tag. Unknown tags will
be silently ignored, but the entire text within the quotes will be checked.

Limitation: If aportion of help text lacks any HTML tag, it will not be checked since it will not be
recognized by check_ycp as help text. Such completely wrong portions of help text will dip
through undetected, thus unchecked.

9.4.8.1. Completeness of <p>/ </p> Paragraph Tags

What

How

Each HTML text must start with a<p> tag and end with a</ p> tag.

There must be a corresponding closing </ p> tag for each opening <p> tag.

Thisis abasic requirement of HTML. The underlying YaST2 widgets may or may not be forgiving
enough to tolerate missing tags, but we'd rather not rely on that.

Besides, no other types of paragraphs other than plain text paragraphs <p> ... </p> are desired in
YaST2 help texts - in particular, no large font boldface headings etc.

See the intro of this section.

9.4.8.2. Text Before, After, Between Paragraphs

What

108

9.4.8. RichText / HTML Sanity Check

For each portion of HTML text:

* Notext before the first <p> tag is permitted.
* Notext after thelast </ p> tag is permitted.

» No text between aclosing </ p> and the next opening <p> tag is permitted.

Each of those casesis asimple yet common HTML syntax error.
How

Seethe intro of this section.
9.4.8.3. No More Than One Paragraph per Message
What

Each single portion of HTML text may contain exactly one paragraph, i.e. one <p> ... </p> pair.
Why
Thisis aconvention to make life easier for the trandators.

The tools used for extracting translatable texts from the sources (GNU get t ext) detect differences
between the last translated version of a message and the current message from the latest source.
They mark such messages as fuzzy, i.e. the (human) trandlator is asked to have a good look at it and
decide whether there has been areal change in the message (thus it needs to be retranslated) or just a
cosmetic change (fixed typo, inserted whitespace, reformatted the paragraph etc.).

This is a tedious task and it gets more tedious the longer each individual portion of text becomes.
Changes from the old to the new version are hard to find if the portions are very long.

Plus, if they are that long it is very likely that always somewhere something has changed, thus the
entire text is marked as fuzzy and needs careful manual checking which is not really necessary for all
the text.

Workaround
Split your help texts and use the Y CP string addition operator to put them together.
Don't:

hel p_text = _("<p>
bla blurb bla ...
blurb bla blurb ...
bla blurb bla ...
</ p>

<p>

bla blurb bla ...
blurb bla blurb ...
bla blurb bla ...
<Ip>");

Instead, do:

/1 Help text (HTM Iike)
hel p_text = _("<p>

bla blurb bla ...

blurb bla blurb ...

bla blurb bla ...
</'p>");

109

How

9.4.9. Widget / Ul Function Parameter
Checks

/1 Help text (HTM. like), continued
hel p_text = hel p_text + _("<p>

bla blurb bla ...

blurb bla blurb ...

bla blurb bla ...

</ p>");

Please also notice the comments for the translators just above the text. The get t ext tools will
automatically extract them along with the text to trandate and put them into the . po file. The trans-
lators can use them as additional hints what thistext is all about.

See the intro of this section.

9.4.8.4. Excess Forced Line Breaks
 after Paragraphs

What

Why

How

Forced line break tags
 are discouraged, especially after a paragraph end tag </ p>.

Such forced line breaks are plain superfluous. The HTML renderer will format the paragraph auto-
matically - after each paragraph there will be a newline and some empty space to set each paragraph
apart from the next.

Thereisno need nor isit desired to add extra empty space between paragraphs. Thisjust looks plain
ugly, even more so if this results in different spacings between several paragraphs of the same help
text.

The most superfluous of those excess line breaks are those at the very end of a help text - after the
last paragraph. Not only are they not good for anything, they sometimes even cause a vertical scroll
bar to be displayed even though this would not be necessary otherwise.

Plus, there have been cases where erstwhile last help text paragraphs had been rearranged so they
now are in the middle of the help text - but unfortunately the trailing
 tag had been forgotten
and moved along with the paragraph, thus causing different inter-paragraph spacings.

To make things even worse, fixing this breaks the translation for the affected paragraph: It will be
marked as fuzzy just because of this even though it has not really changed.

We cannot entirely get rid of the
 tags (but we would like to). Sometimes they are needed
within paragraphs. But at least those at the end of paragraphs we can do without.

 after </ p> (maybe with anything in between) is rejected. All other
 tags are silently ig-
nored.

9.4.9. Widget / Ul Function Parameter Checks

110

Parameters to YaST2 Ul widgets plus some commonly used functions (e.g. W z-
ard: : Set Content s(), Popup: : Message() etc.) are checked where possible - if the para-
meters are simple string constants, maybe surrounded by translation markers (*_("...")").

Optional widget parameterslike opt (...) or i d(...) areignored.

The following examples will be checked:

PushBut ton(" OK") ;

9.4.9. Widget / Ul Function Parameter
Checks

PushButton(_("Cancel"));

PushButton(id(apply), _("Apply"));

PushButton(opt(default), _("OK"));

More complex parameters like variable contents or Y CP terms cannot be checked.

The parser used in check_ycp for that is really dumb. In fact, it only scans for keywords like
PushBut t on outside string constants, tries to find the corresponding matching pair of parentheses
"(...) " and splits everything inside into comma-separated subexpressions.

Only the most basic of those subexpressions are checked - only simple string constants " ..." or
string constants marked for translation _("...") .

The following examples will not be checked:

CheckBox("/dev/"+device);
CheckBox(sformat("/dev/%"), device);

CheckBox(Get DevName());

string message = "OK";
PushButton(nessage);

9.4.9.1. Keyboard Shortcut Check

What

Why

How

Widgets that can have a keyboard shortcut (one character marked with an ampersand "&") are
checked for presence of akeyboard shortcut.

Note

Consistency of the keyboard shortcuts is not checked, only presence. check_ycp
cannot know which widgets will be on-screen at the same time, thus it cannot find out
whether the same keyboard shortcut has been assigned twice to different widgets.

L&

Thisis for users whose mouse doesn't work (especially during installation time) as well as for exper-
ienced users who prefer working with the keyboard. Navigation from one widget to another is much
easier when each widget that can get the keyboard focus can be reached with an [Alt] key sequence
rather than repeatedly using the [Tab] key and/or the cursor keys.

There may be a lot more widgets that can have keyboard shortcuts than you expected. Basicaly,

every widget that can somehow be operated with the keyboard (even if it is only scrolling) and that
has an associated label (within, above or beside) can have a keyboard shortcut and should get one.

The widget parameter that acts as alabel is checked for presence of exactly one ampersand "&".

See the widget checks of this section for more.

111

9.4.10. Standardized Lib Function
Checks

9.4.9.2. Translatable Messages Check

What

How

Widget parameters that are displayed literally as text are checked for trandation markers
("))

Every text message that ever gets to the end user is to be translated into the user's native language.
This can only be made sure if the message is marked for tranglation.

See the intro of this section.

9.4.10. Standardized Lib Function Checks
9.4.10.1. Duplicate Definitions of Wizard Lib Functions

What

Why

How

Presence of definitions of functions from the wizard lib (Package yast 2) outside the wizard library
itself is checked such asW zar d: : Set Cont ent s() etc.

At the start of YaST2 develompent there was no other way of sharing code other than simply copy-
ing it. Those days are gone; Y CP now supportsani ncl ude mechanism similar to C or C++.

Very general code like how to create the typical YaST2 wizard window layout has now been moved
to the wizard lib, a collection of include files that provide such facilities. We want to get rid of du-
plicate code as soon as possible for obvious reasons (consistency, maintainability, efficiency).

If "def i ne" followed by one of the known function names of the wizard lib is found outside the
file where this is supposed to be, awarning is issued. Both function names and file names are hard-
wired within check_ycp.

9.4.10.2. Definitions and Usage of Obsolete Functions

What

How

112

Usage or presence of definitions of known obsolete functions is checked, eg.
Popup: : Message(), Popup: : YesOr No() etc.; using an equivalent replacement function
from thewizard lib'sconmon_popups. ycp include file is suggested.

Those functions are now superseded by those from conmon_popups. ycp. The replacement
functions usually require less parameters (thus are easier to use) and use a common and consistent
widget layout.

The definitions are checked very much like the wizard function definitions above; function and file
names are hardwired here as well.

Usage of the obsolete functions is checked simply by checking for occurrence of the function name

9.4.11. Alternative Variable Declara-
tions

followed by an opening parenthesis (maybe with whitespace in between) somewhere in the code.

9.4.10.3. Usage of Predefined Messages

What

Why

How

Presence of predefined message strings is checked, e.g. "&Next ", "&Back" etc.; using a corres-
ponding function from the wizard lib (Label Module) is suggested, eg. La-
bel : : Next Button(), Label : : BackButt on() etc.

» Ease the burden on the trand ators - with the predefined messages they don't need to trandate the
same standard texts over and over again.

» Consistent messages for the same type of buttons etc. throughout all of YaST2.
e Consistent keyboard shortcuts for the same button throughout all of YaST2.

» If we ever need to change one of those standard messages, we can do that centralized.

The Y CP code, stripped of comments, is checked for any one of the predefined messages (including
any keyboard shortcuts that may be there), surrounded by translation markers ("_("...") ™).
Limitations

Differences in spelling or only in whitespace will not be caught. If there is no or another keyboard
shortcut, the message will not be considered the same - so if anybody uses "Neé&xt " rather than
"&Next ", thiswill go undetected.

9.4.11. Alternative Variable Declarations

What

How

Alternative variable declarations are rejected, e.g.

string|void value = anyth ng();
synbolltermresult = U: Userlnput()
integer|string x = 42;

Just about the only situation where this made sense was when a variable might sometimesbeni | to
indicate some error condition. All other variants of this are of purely academic nature or (more
likely) poor programming style. Since all YCP types can be ni | now, however, this feature be-
comes totally redundant. It will very likely be dropped in the near future.

The entire Y CP code, stripped of comments, is checked for occurences of one of the primitive Y CP
types (st ri ng, i nt eger, bool ean, map, | i st, any, voi d etc.) followed by a pipe sign |
(maybe with whitespace before or after it) and another primitive Y CP type.

9.4.12. Checking YCP Examples

113

9.4.13. check_ycp and Emacs

You probably don't want to perform all of the available checks for ssimple YCP examples. Those
should be concise and written for legibility rather than for completeness. They will usually not con-
tain a standard format file header with al bells and whistles, no translation markers etc. - you don't
want to bloat Hel | oWor | d. ycp with all that stuff.

check_ycp hasaspecia example mode for just this purpose: It turns off all checks that don't make
sense for simple examples, yet alows you to use check _ycp anyway. If you think "well, what's
left then?" think about the future. check _ycp can and will be expanded to cover more and more
checks, and even your examples can benefit from it.

For ssmple Y CP examples (and only for them, please!) invoke check _ycp with the - x command
line option:

check_ycp -x Hell owrld. ycp

Thisturns off all checks that don't make sense for examples.

9.4.13. check _ycp and Emacs

check_ycp and Emacs go together well:

* LoadaYCPfileinto Emacs.

» Invoke the Emacs compile command:
M x conpi |l e

e Edit the compile command ("nmake -k" by default) in the minibuffer; change it to the
check_ycp command you wish to invoke (you only need to do this once for each Emacs ses-
sion):

check_ycp *.ycp

* HitReturn
» Usethe next - error function to go to the next error check_ycp has reported. The corres-

ponding Y CP file will automatically be loaded into Emacs if needed, and Emacs will jump to the
corresponding line within that file.

If you haven't done so already, you might want to bind the conpi | e and next - er r or functions
tokeysinyour ~/ . enacs file, eq.

(gl obal -set-key "f42" 'conpile)
(gl obal -set-key "f43" 'next-error)

Therea challenge hereisto find akey that is not already in use for some other important function.

If you are areal hardcore Y CP hacker, you can even go so far and change the default compile com-
mandtocheck_ycpin~/. enacs:

(setqg conpil e-command "check_ycp *.ycp")

9.4.14. Extending check _ycp

114

9.5. The YaST2 Macro Recorder

9.4.14.1. Adding new Widgets / Ul Functions

Everybody should be able to add checks for a new widget or a new function that uses keyboard
shortcuts (unlikely) or translatable messages (very likely) - even without any knowledge of Perl:

1. Locatethecheck_wi dget _parans() function.

2. Add your widget to the list (the large regexp) near the function beginning, where all the other
widgets are. Be careful not to include any whitespace (blanks or tabs) inside the parentheses.
Wrong:

(MyNewW dget) |
OK:

(M/NewW dget) |

3. Addanel sif () branchtothelargei f () ...el sif()...el sif () construction:;

el sif ($widget =~ /MWWdget/)
check_keyboard_shortcut ($widget, $line_no, 1, @rgs);
check_transl ation ($widget, $line_no, 1, @rgs);

}

You might have to change the third parameter according to your widget or function: This is the
number of the parameter to be checked (the first oneis 1) after all “opt () and " i d() parameters
have been removed.

Of course you can omit the keyboard shortcut check (check _keyboard _shortcut ()) if it
doesn't make sense for your widget or function.

If there is more than one parameter to be checked for translatable messages, add a call to
check_transl ation() foreach.

9.4.14.2. Other Extensions

Like Linus Torvalds once said: "Use the source, Luke!" ;-)

check_ycp's sources are extensively commented, even the many regular expressions used there.
But changing those regexps really requires some in-depth knowledge of regexps in general and Perl
regexpsin particular. If you fedl unsafe, better not touch them.

Other than that, use your creativity.

9.5. The YaST2 Macro Recorder

Target Audience:

e YaST2 power users
* Quality assurance (Testers)

e Technical writers

9.5.1. Introduction

The YaST2 Ul (User Interface) features a macro recorder and player that records user interaction
during installation or system configuration and plays those user actions at a later time in the same

115

9.5.2. Quick Start

scenario.

The Qt (graphical) and NCurses (text mode) user interfaces both support the macro recorder. It is
also independent of graphics mode, display resolution, widget theme, terminal type or other details
of the desktop being used: Not low-level input device (mouse or keyboard) events are recorded but
logical user actions such as "Accept button was activated”, and widget status information is saved in
terms as "the user name input field contains tux", not individual keystrokes that might include lots
of cursor movement and hitting the "backspace” key.

Macros recorded in one environment using the Qt Ul may be played in another using the NCurses
Ul - unless, of course, the dialogs in either situation have completely different contents because ex-
tended features were used the other Ul is not capable of. This should occur only very rarely,
however.

9.5.2. Quick Start

9.5.3.

116

Since most readers are impatient and just want to know how to get it going, here is a quick start
guide - but PLEASE read the other sections anyway to avoid disappointment or even severe data
loss:

e Start a YaST2 module in Qt (grahpical) mode - from the YaST2 control center, from the KDE
control center, from the desktop menu or via command line.

e Torecord amacro, press Alt-Ctrl-Shift M The sequence of first Alt, then Ctrl, then Shift isim-
portant! A file selection box opens prompting you to enter afile name for the macro. Make sure
you have write permission to the directory you select.

* Work with the YaST2 module as usual.

» Press Alt-Ctrl-Shift M again to stop recording. When the module is finished of course record-
ing stops automatically.

e Start the same module again.
» Toplay amacro, press Alt-Ctrl-Shift P.
A file selection box opens. Select the macro file you recorded earlier.

» Watch the YaST2 module replay the same you did when recording the macro.

Alternatively, you can also supply a macro on the " y2base" command line;

/usr/ib/YaST2/ bi n/ y2base sone_yast2_nodul e qt --nacro /wherever/nacro.ycp

/usr/lib/YaST2/bi n/ y2base sone_yast2_nodul e ncurses --nmacro /wherever/ nacro.ycp

This is currently the only way to play macros with the NCurses (text mode) Ul - it doesn't provide
specia key combinations for recording or playing macros (yet).

Purpose

The general idea of this macro recorder is to provide an easy way of automating repetetive tasks on
the user level - for automated testing and to easily produce lots of screen shots in recurring situ-
ations.

For example, the SUSE Linux installation manuals include lots of screen shots that of course look
differently in each language, and it is very desirable to have the screen shot in the same language as
the rest of the manual. For the documentation department, this means that all required screen shots

9.5.4. What it is not

have to be made in all languages we ship translated manuals for, so all relevant installation scenarios
have to be restaged with only the language being different. To make matters worse, the responsible
person might not even understand al those languages and thus has to rely on guessing what button
to click on.

With the macro recorder, he can record a macro in a language he understands, do all screen shots
there, then restart the process, select another language and play the macro - all screen shots he took
will then automatically be made in that language. Of course, not a button text like "Accept" is being
recorded, but an internal logical button name that doesn't change depending on language.

9.5.4. What it is not

The macro recorder is not intended as a poor man's substitute for AutoY aST, the automatic untatten-
ded installation - even though it can be (mis-) used that way to some degree.

If you have lots of machinesto install in a similar way, use AutoY aST, not the macro recorder: The
macro recorder is dumb. It will blindly repeat whatever you did while recording the macro. If
however at some other machine the situation is only dlightly different, this might easily not work
any more: If there are hard disks of different size or with a different partitioning scheme and you
didn't rely on YaST2's automatic modes but created partitions manually, this might fail on the other
machine.

Then you will get an error dialog, at which point your macro will no longer match the situation, but
of course the macro will not realize this and happily keep playing user actions that are completely
out of sync with the dialogs on-screen. Usually this will just cause lots of more error dialogs, but
chances are that it might keep working for awhile and cause data loss on that machine.

Note: This might even happen at the same machine if the environment just changed a bit - if, say,
you added a hard disk partition in the first run, this might fail in the second run (or in the third or
fourth run) because there is no more free space on the disk. Then you will also get error dialogs.

AutoYaST on the other hand takes al this into account and reacts in amuch more intelligent way.

9.5.5. Quirks and Limitations

Given the intentions and target user group of the macro recorder, there are some known limitations
that will very likely remain for the forseeable future:

Some widgets in the Qt Ul "eat" the specia key combinations. If one of those has the keyboard fo-
cus, pressing Alt-Ctrl-Shift M (or P) will have no effect. But there is an easy workaround: Simply
move the keyboard focus with the "Tab" key to another widget like a push button - this will not
change the environment for macro recording or playing. It is otherwise irrelevant to the macro re-
corder which widget has the keyboard focus.

Qt selection boxes are particular notable for this - you have to hit "Tab" in the language selection in
thefirst dialog of a'YaST2 installation before you can start recording or playing a macro there.

The software package manager user interface does not support the macro recorder at al. This was
the tradeoff for getting a user interface that powerful: All that dialog is one large widget written
purely in C++ unlike almost all other YaST2 dialogs.

If you use the macro recorder, don't go into the detailed software selection.

The Qt version of the YaST2 control center also does not support the macro recorder at all. Itisare-
latively basic Qt/C++ program that acts as a program launcher for the YaST2 modules, but it is not

connected to them very closely. This was also a tradeoff: It is optimized for pretty looks and fast
startup time.

9.5.6. Anatomy of a Macro

Here is an example of a macro recorded during the first part of aYaST2 installation:

117

118

9.5.6. Anatomy of a Macro

In the language dialog, "German" was selected. Notice how there are no German texts to be seen
anywhere inside the macro - only symbolic names are used.

Then in a popup asking whether to update or to do a new installation "installation™" was chosen.

From the installation settings proposal "software" was selected to change the amount of software to
install from "default system” to "minimal+X11".

Then the install ation was started.

Example 9.1. YaST2 Ul macro file

/1 YaST2 U nacro file generated by U nacro recorder
Il
I Q@ U: Alt-Crl-Shift-M start/stop Macro recorder
11 At-Crl-shift-P: Play nmacro
Il
/'l Each block will be executed just before the next Userlnput().
/1 "return' before the closing brace ('}') of each block relinquishes control
/'l back to the YCP source.
/'l 1nside each block arbitrary YCP code can be added nanually.
{ {
Ul :: ChangeWdget ("id (' language), "Currentltem "de_DE"); // YSel ecti onBox
// U ::MakeScreenShot ("/tnp/yast2-0000");
Ul :: FakeUser | nput ("l anguage);
return;
}
{ ' NN . i
Ul :: ChangeWdget ("id (' language), "Currentltem "de_DE"); // YSel ecti onBox
Ul : : MakeScreenShot ("/t np/ screen-shots/| anguage- sel ection. png");
/1 U ::MkeScreenShot ("/tnp/yast2-0001");
Ul :: FakeUser I nput (“accept);
return;
}
Ul :: ChangeWdget(“id (“install), “Value, true); // YRadioButton
/1 U ::MkeScreenShot ("/tnp/yast2-0002");
Ul :: FakeUser I nput ("ok);
return;
}
{
/1 U ::MkeScreenShot ("/tnp/yast2-0003");
Ul :: FakeUser | nput ("software");
return;
}
{
Ul :: ChangeW dget(“id ("M nimal +X11"), “Value, true); // YRadioButton
Ul : : MakeScreenShot ("/t np/ screen-shot s/ sw base- sel ection. png");
/1 U ::MkeScreenShot ("/tnp/yast2-0004");
Ul :: FakeUser | nput ("M ni mal +X11");
return;
}
{ . . : . :
Ul :: ChangeWdget(“id ("M nimal +X11"), “Value, true); // YRadioButton
/1 U ::MkeScreenShot ("/tnp/yast2-0005");
Ul : : FakeUser | nput (“accept);
return;
}
{
/1 U ::MkeScreenShot ("/tnp/yast2-0006");
Ul : : FakeUser | nput (“accept);
return;
}
}

9.5.6. Anatomy of a Macro

Each dialog that is opened gets its own block enclosed in curly braces ("{..}"). In each block, the
status of each widget that holds status information is restored (Ul::ChangeWidget()).

Then there is a chance to make a screen shot; the macro recorder automatically adds a
Ul::MakeScreenshot() statement at the appropriate place, assigning generic file names that end in
numbers. This statement is commented out by default as indicated by leading double slashes ("//") -
thismakes it smpleto enable it if desired.

If the user explicitly hits the [PrintScreen] key to make a screen shot, another Ul::MakeScreenShot()
call (this time not commented out) will be added with the exact file name the user entered at the file
selection box. The ideais to give the user a chance to assign more descriptive names to the screen
shots.

After that, Ul::FakeUserlnput() simulates the same input the user had done while recording the
macro. Usually, thisis activation of a push button (like “accept as seen so many times above), but it
can also be changing a selection box like in the language selection at the start of the macro (for in-
siders: if the widget has “opt("notify) set).

The last lineisa"return" statement that returns control flow from the macro block to the application
that is being executed.

When the next dialog is executed (for insiders: when Ul::Userlnput() or related are called), the next
macro block is executed.

So not only is the mechanism very generic, the code that is produced is also plain Y CP code that is
readable and that can easily be adapted if necessary.

119

120

Appendix A. Ul Richtext

The RichText widget in the Qt Ul currently supports the tags listed below. Note that not all of them
will make sense for use within YaST2 (Most notably all those which refer to files)

<gt>...</gt> - A Qt rich text document. It understands the following attributes

titte - the caption of the document. This attribute is easily accessible with
[25]QTextView::documentTitle()

type - The type of the document. The default type is page . It indicates that the document is dis-
played in a page of its own. Another style is detail. It can be used to explain certain expressions
more detailed in afew sentences. The QTextBrowser will then keep the current page and display
the new document in asmall popup similar to QWhatsThis. Note that links will not work in doc-
uments with <qt type="detail" >...</qt>

bgcolor - The background color, for example bgcolor="yellow" or bgcol or="#0000FF"
background - The background pixmap, for example background="granit.xpm". The pixmap
name will be resolved by a[26]QMimeSourceFactory().

text - The default text color, for example text="red"

link - Thelink color, for example link="green"

<a>... - An anchor or link. The reference target is defined in the href attribute of the tag as
in \c.... Y ou can aso specify an additional anchor within the specified
target document, for example If ais meant to be an anchor,
the reference source is given in the name attribute.

... - Customizes the font size and text color. The tag understands two attributes:

color - the text color, for example color="red" or color="#FF0000".
size - the logical size of the font. Logical sizes 1 to 7 are supported. The value may either be ab-
solute, for example size=3, or relative. In the latter case, the sizes are ssmply added.

... - Emphasized. As default, thisis the same as <i>...</i> (Italic)
... - Strong. As default, thisis the same as <bold>...</bold> (bold)
<big>...</big> - A larger font size.

<small>...</small> - A smaller font size.

<code>...</code> - Indicates Code. As default, thisisthe same as <tt>...</tt> (typewriter)
<pre>...</pre> - For larger junks of code. Whitespaces in the contents are preserved.
<large>...</large> - Large font size.

... - Bold font style.

<hl1>...</h1> - A top-level heading.

<h2>...</h2> - A sub-level heading.

<h3>...</h3> - A sub-sub-level heading.

<p>...</p> - A paragraph.

<center>...</center> - A centered paragraph.

<blockquote>...</blockquote> - An indented paragraph, useful for quotes.

<multicol cols=n >...</multicol> - Multicol display with n columns
<twocolumn>...</twocolumn> - Two-column display.

... - An un-ordered list. You can also pass a type argument to define the bullet style.
The default is type=disc, other types are circle and square.

... - An ordered list. Y ou can also pass a type argument to define the enumeration label
style. The default istype="1", other typesare"a" and "A".

... - A list item.

 - An image. The image name for the mime source factory is given in the source attribute,
for example The image tag aso understands the attributes width and
height that determine the size of the image. If the pixmap does not fit to the specified size, it will
be scaled automatically.

 - A line break

<hr> - A horizonal line

121

122

Part |. YCP Reference

Table of Contents

Lo WM BUIINS Lottt e et e e 127
O (@ = o T 129
SO (1 o1 131
SCRGEINAITIE ...t et a e e ens 133
SCRSEIDEFAUIT ...ivviiieiiiie e e 135
SCRGEIDEFAUITceviieieiie e 137
N (0 T 139
LT = o 7= o 141
(€S 1= oo o] 0o PRSPPI 143
GetEnVironmMeNtENCOAINGccvvuniiiiiiiiee e 145
SEILANQUBOE ...evniirieieie it 147
REBA ... 149
VT e 151
EXECULE ..o et 153
CaAll 155
[1. YCP BYIEDIOCK BUIITINS ...ueiiiiiieeiiii et 157
TODYEEDIOCK ... 159
LS PSP 161
I, YCP H O BUITTINS ...ttt e et e e e 163
L0 11 1o 165
L0 0 7= | 167
IV.YCPINteger BUIltINSuiiiii e 169
100 1411= o= S PP PP 171
A 4 e T T T] 173
IN e 175
01110 o I 177
o0 1= 1 179
LSS (o] 1 7= T U 181
00T o PPN 183
001 0/ U PRPRPPRPPRN 185
L] L= SRR 187
=0 189
T 1 7= o U SPPPTPPP 191
L 1= o U 193
L0 1S = ST 195
S o] 1 S P UPTUPTUPTPPP 197
] 1 PP 199
LS 0L £ 1 T 201
ChAINGE e 203
A 205
LS = TSP 207
(510107 PP PP PPRPPRN 209
LSS = o PSP 211
FOM@BEN .. 213
L0 S 215
VI MaAD BUITTINS ettt 217
PBSKEY ettt 219
L] = PSP 221
72100 170 PP 223
=0 225
0o o 227
A 229
ChANGE .. 231
Sz et 233
L0 = o [ST 235
10 27= o 237
1510010V PP 239

125

126

TOOKUD ettt ettt e e e e 241

V1. MiscellaneousS YCP BUIITINSc.uniieiiiiii e 243
L1001 PSP 245
LS == o U 247
7= 70 (0] 249
LS T [0 o TS 251
LS =TT [0 o PSP 253
BVl e 255
SFOMMBL ... 257
222 1= 1 o 259
Y2MITESIONE .. 261
A= 1 011 0o R PP SPPR TR 263
2= £ (0 SRR 265
22 < o U] PP 267
222111 £ 269

VL YCPPath BUItINS ... 271
LS .= 273
A 275
TOPAEN .o 277

IX. YCP SING BUIINS .. e e 279
LS = PSP 281
1S T = 1o 283
1061101 1 {1 oo PSP 285
SUDSEFING ettt 287
SUDSEFING ettt 289
L0 PR 291
100 o = PSP 293
10 0= 295
107z S o 1 297
JEIEIECNAIS ... 299
FIEIChArS ... 301
00= o oS 1 oo [P TPTPPRPIN 303
fINAFIFSINOLOf ...cieeei e 305
FINAFIPSIOf . oeee e 307
FINAIASEOfeeee e 309
FINAIASENOLOT ...eeeeee e 311
FEOEXPIMEECH ..utiiiiit ettt et e e e e e e e eee 313
(50 0] 001 SR PP PPRPPRN 315
=015 (01= U o S 317
1510150 0100) (= 011 = S 319
1001] 0T RSP PR 321
TIMESIIING e e 323
L0 o PPN 325
(00077 011010 T PP 327
(ot Y/ 011 o o Y/ o (U 329
CrYPOIOWTISN e 331
(0101 1= PRSP 333
ANGELEEXE ...t 335

XoYCPTEMBUIINS ..t eans 337
LS . ST 339
B 341
SYMDBOIOF e 343
LSS = 345
[(6]< 1 1 1 I PP 347
151010V PP 349
0 o) PP 351

WFM Builtins

127

128

Name

SCROpen -- Create a new scr instance.

SCROpen

i nt eger SCROpen (nane, check_version);

string name ; _
bool ean check_version ;

Parameters

string name avalid y2component name

boolean determines whether the SUSE V ersion should be checked
check_version

Return

integer On error anegative value is returned.

Description

Create a new scr instance. The name must be a valid y2component name (eg. "scr, "ch-
root=/mnt:scr"). The component is created immediately. The parameter check_version determines
whether the SUSE Version should be checked. On error a negative value is returned.

129

130

Name

SCRClose -- Close a scr instance.

SCRClose

voi d SCRC ose (handl e);
i nteger handl e ;

Parameters

integer handl e SCR handle

Return

void

131

132

Name

SCRGetName -- Get the name of a scr instance.

SCRGetName

string SCRGet Nane (handl e);
i nteger handle ;

Parameters

integer handl e SCR handle

Return

string Name

133

134

Name

SCRSetDefault -- Set's the default scr instance.

SCRSetDefault

voi d SCRSet Default (handle);
i nteger handle ;

Parameters

integer handl e SCR handle

Return

void

135

136

Name

SCRGetDefault -- Get's the default scr instance.

SCRGetDefault
i nteger SCRGetDefault ();

Return

integer Default SCR handle

137

138

Name

Args -- Returns the arguments with which the module was called.
Args
list Args ();

Return

list List of arguments

Description

The result is a list whose arguments are the module's arguments. If the module was called with
Cal | Function("ny_nod", [17,true]),Args() willreturn[17, true].

139

140

Name

GetL anguage -- Returns the current language code (without modifiers!)
GetLanguage

string GetlLanguage ();

Return

string Language

141

142

Name

GetEncoding -- Returns the current encoding code

GetEncoding
string GetEncoding ();

Return

string Encoding

143

144

Name

GetEnvironmentEncoding -- Returns the encoding code of the environment where yast is started

GetEnvironmentEncoding

string Get Environnent Encodi ng ();

Return

string encoding code of the environment

145

146

Name

Setl anguage -- Selects the language for translate()
SetL anguage

string SetLanguage (| anguage, encoding);
string | anguage ;
string encoding ;

Parameters

string | anguage

Optional Arguments

string encodi ng

Return

string proposed encoding have fun

Description

The "<proposed encoding>" is the output of 'nl_langinfo (CODESET)' and only given if SetLan-

guage() is called with asingle argument.

Usage

Set Language(" de_DE", "UTF-8") -> ""
Set Language("de_DE@uro") -> "I SO 8859- 15"

147

148

Name

Read -- Specia interface to the system agent. Not for general use.
Read

any Read (path, options);
path path ;
any options ;

Parameters
path pat h Path

Optional Arguments

any opti ons

Return

any

149

150

Name

Write -- Special interface to the system agent. Not for general use.
Write

bool ean Wite (path, options);
path path ;
any options ;

Parameters

path pat h Path

Optional Arguments

any opti ons

Return

boolean

151

152

Name

Execute -- Special interface to the system agent. Not for general use.
Execute

any Execute (path, options);
path path ;
any options ;

Parameters
path pat h Path

Optional Arguments

any opti ons

Return

any

153

154

Name
call -- Executesa Y CP client or a'Y 2 client component.
call

any call (nane, argunents);
string name ;
[ist argunments ;

Parameters

string name client name

listar gunment s list of arguments

Return

any

Description

Thisimplies * that the called Y CP code has full access to al module status in the currently running
YaST.

The modulename is temporarily changed to the name of the called script or a component.

In the example, WFM looks for the file Y AST2HOME/clientsinst_mouse.ycp and executesit. If the
client is not found, a'Y 2 client component istried to be created.

Usage

call ("inst_nouse", [true, false]) ->

155

156

YCP Byteblock Builtins

157

158

Name

tobyteblock -- Converts a value to a byteblock.

tobyteblock

byt ebl ock tobytebl ock (VALUE);
any VALUE ;

Parameters

any VALUE

Return

byteblock

159

160

Name

size -- Returns a size of a byteblock in bytes.

size

i nteger size (VALUE);
byt ebl ock VALUE ;

Parameters

byteblock VALUE

Return

integer

161

162

YCP Float Builtins

163

164

Name

tostring -- Converts a floating point number to a string
tostring

string tostring (FLOAT, PRECI SION);
float FLOAT ;
i nt eger PRECI SI ON ;

Parameters

float FLOAT
integer PRECI -
SI ON

Return

string
Usage

tostring (0.12345, 4) -> 0.1235

165

166

Name

tofloat -- Converts avalue to afloating point number.
tofl oat

float tofloat (VALUE);
any VALUE ;

Parameters

any VALUE

Return

float

Usage

167

168

YCP Integer Builtins

169

170

Name

tointeger -- Converts avalueto an integer.
tointeger

i nteger tointeger (VALUE);
any VALUE ;

Parameters

any VALUE

Return

integer
Usage

tointeger (
toi nteger (" -
toi nteger ("O0x42")
tointeger ("

171

172

YCP List Builtins

173

174

Name
find -- Search for acertain element in alist
find

any find (VAR LIST, EXPR);
any VAR ;

list LIST ;

bl ock EXPR ;

Parameters

any VAR
list LI ST
block EXPR

Return

any Returns nil, if nothing is found.

Description

Searches for a certain item in the list. It applies the expression EXPR to each element in the list and
returns the first element the makes the expression evaluate to true, if VAR is bound to that element.

Usage

find (integer n, [3,5,6,4], ~(n >=5)) ->5

175

176

Name

prepend -- Prepend alist with a new element

prepend

list prepend (ELEMENT, LIST);
any ELEMENT ;
list LIST;

Parameters

any EL EMENT Element to prepend

listLI ST List

Return
list

Description

Creates a new list that isidentical to the list LI ST but has the value ELEMENT prepended as addi-

tional element.
Usage

prepend ([1, 4], 8) ->[8, 1, 4]

177

178

Name

contains -- Check if alist contains an element
contains

bool ean contains (LIST, ELEMENT);
list LIST;
any ELEMENT ;

Parameters

listLI ST List

any ELENVENT Element

Return

boolean Trueif element isin thelist.

Description

Determines, if a certain value ELENVENT iscontained in alist L1 ST.

Usage

contains ([1, 2, 5], 2) -> true

179

180

Name

setcontains -- Check if asorted list contains an e ement
setcontains

bool ean setcontains (LIST, ELEMENT);
list LIST;
any ELEMENT ;

Parameters

listLI ST List

any ELENVENT Element

Return

boolean Trueif element isin thelist.

Description

Determines, if a certain value ELEMENT is contained in alist L1 ST, but assumes that L1 ST is sor-
ted. If LI ST isnot sorted, the result is undefined.

Usage

setcontains ([1, 2, 5], 2) -> true

181

182

Name

union -- Union of lists
union

list union (LIST1, LIST2);
list LISTL ;
list LIST2 ;

Parameters

listLI ST1 First List

list LI ST2 Second List

Return
list

Description

Interprets two lists as sets and returns a new list that has all elements of the first list and all of the
second list. Identical elements are dropped. The order of the elements in the new list is preserved.
Elementsof | 1 are prior to elementsfrom| 2.

WARNING: quadratic complexity so far
Usage

union ([1, 2],
union ([1, 2, 3], [

183

184

Name

merge -- Merge two lists into one
merge

list nerge (LIST1, LIST2);
list LISTL ;
list

LI ST2 ;
Parameters
list LI ST1 First List
list LI ST2 Second List
Return
list
Usage
merge ([1, 2] [3, 4]) ->[1, 2, 3, 4]
nerge ([1, 2, 3], [2, 3, 4]) ->[1, 2,

3, 2, 3, 4]

185

186

Name

filter -- Filter aList

filter

list filter (VAR LIST, EXPR);
any VAR ;

list LIST ;
bl ock<bool ean> EXPR ;

Parameters

any VAR Variable
listLI ST List to be filtered

block<boolean> Block
EXPR

Return
list

Description

For each element of thelist LI ST the expression expr is executed in anew context, where the vari-
able VAR is assigned to that value. If the expression evaluates to true under this circumstances, the
value is appended to the result list.

Usage

filter (integer v, [1, 2, 3, 5], { return (v > 2); }) ->[3, 5]

187

188

Name

maplist -- Maps an operation onto all elements of alist and thus creates a new list.
maplist

list<any> maplist (VAR LIST, EXPR);
any VAR ;

list<any> LIST ;

bl ock EXPR ;

Parameters

any VAR
list<any> LI ST
block EXPR

Return

list<any>

Description

For each element of the list LI ST the expression EXPR is evaluated in a new context, where the
variable VAR is assigned to that value. The result isthe list of those evaluations.

Usage

maplist (integer v, [1, 2, 3, 5], { return (v +1); }) ->1[2, 3, 4, 6]

189

190

Name

listmap -- Maps an operation onto all elements of alist and thus creates a map.
listmap

list listmap (VAR LIST, EXPR);

any VAR ;

list LIST ;
bl ock EXPR ;

Parameters

any VAR
list LI ST
block EXPR

Return
list

Description

For each element VAR of the list LI ST in the expression EXPR is evaluated in a new context. The
result is the map of those evaluations.

The result of each evaluation must be a map with a single entry which will be added to the result
map.

Usage

listmap (integer k, [1,2,3], { return $[k, "xy"]; }) -> $[1:"xy", 2:"xy"]
li p (integer k, [1,2,3], { any a = k+10; any b = sformat ("x%", k); map ret = $[a, b]; return ret;

191

192

Name

flatten -- Flatten List

flatten

li
| <

st flatten (LIST);
ist<li

st> LI ST ;

Parameters

list<list> LI ST
Return
list

Description

Getsalist of listsLI ST and creates asingle list that is the concatenation of those listsin LI ST.

Usage

flatten ([[1, 2], [3, 4]]) -

193

194

Name

toset -- Sort list and remove duplicates
toset

toset (LIST);
LI ST ;

Parameters

listLI ST

Return

list Sorted list with unique items

Description

Scans alist for duplicates, removes them and sorts the list.

Usage

toset ([1, 5, 3, 2, 3, true, false, true]) -> [false, true,

1, 2, 3, 5]

195

196

Name

sort -- Sort A List according to the Y CP builtin predicate >
sort

list sort (LIST);
list LIST;

Parameters

listLI ST

Return

list Sorted list

Description

Sort the list LIST according to the Y CP builtin predicate >. Duplicates are not removed.
Usage

sort ([2, 1, true, 1]) -> [true, 1, 1, 2]

197

198

Name

sort -- Sort list using an expression

sort

list sort (x, y, LIST, EXPR);

any x ;

any y ;
list LIST ;
bl ock EXPR ;

Parameters

any x

anyy

list LI ST
block EXPR

Return
list

Description

Sortsthelist LI ST. You have to specify an order on the list elements by naming formal variables x
and y and specify an expression EXPR that evaluates to a boolean value depending on x and y. Re-
turn true if x>y to sort the list ascending.

The comparison must be an irreflexive one, that is">" instead of ">=".

It is because we no longer use bubblesort (yuck) but std::sort which requires a strict weak ordering.

Usage

sort (integer x, integer y, [3,6,2,8], " (x<y)) ->[2, 3, 6, 8]

199

200

Name
splitstring -- Split a string
splitstring

list<string> splitstring (STR, DELIM;
string STR ;
string DELIM;

Parameters

string STR
string DELI M

Return

list<string>

Description

Splits STRinto sub-strings at delimiter chars DEL1 M the resulting pieces do not contain DELI M

If STR starts with DELI M the first string in the result list isempty If STR ends with DELI M the last
string in the result list is empty. If STR does not contain DELI M the result is a singleton list with
STR

Usage
splitstring ("/abc/dev/ghi", "/") ->["", "abc", "dev", "ghi"]
splitstring ("abc/dev/ghi/", "/") -> ["abc", "dev", "ghi", ""]
splitstring ("abc/dev/ghi/", ".") -> ["abc/dev/ghi/"]
splitstring ("text/with:different/separators”, "/:") -> ["text", "with", "different", "separators"]

201

202

Name

change -- Change alist
change

list change (LIST, value);
[ist LIST;
any val ue ;

Parameters

listLI ST
any val ue

Return
list

Description

DO NOT use this yet. Its for a special requst, not for common use!!! changes the list LIST adds a
new element

Usage

change ([1, 4], 8) ->[1, 4, 8]

203

204

Name
add -- Create anew list with anew e ement
add

list add (LIST, VAR);
[ist LIST,;
any VAR ;

Parameters
list LI ST
any VAR

Return

list The new list

Description

Createsanew list that isidentical to thelist LI ST but has the value VAR appended as additional ele-

ment.

Usage

add ([1, 4], 8) ->[1, 4, 8]

205

206

Name

size -- Return size of list
size

i nteger size (LIST);
list LIST ;

Parameters

listLI ST

Return

integer size of thelist.

Description

Returns the number of elements of thelist LI ST

207

208

Name

remove -- Remove element from alist
remove

st renove (LIST, e);
st LIST ;
te

I
!
i ger e ;

i
i
n
Parameters

listLI ST
integer e element index

Return

list Returnsnil if theindex isinvalid.

Description

Remove thei 'th value from alist. The first value has the index 0. The call remove ([1,2,3], 1) thus
returns[1,3].

Usage

remove ([1, 2], 0) -> [2]

209

210

Name
select -- Selet alist element
select

any select (LIST, |INDEX, DEFAULT);
list LIST;

i nteger | NDEX ;

any DEFAULT ;

Parameters

listLI ST
integer | NDEX
any DEFAULT

Return

any

Description

Gets the | NDEX'th value of alist. The first value has the index 0. The call select([1,2,3], 1) thus re-
turns 2. Returns DEFAULT if the index isinvalid or if the found entry has a different type than the
default value.

Usage

select ([1, 2], 22, 0) -> 0
select ([1, "two"], O, "no") -> "no"

211

212

Name

foreach -- Process the content of alist
foreach

any foreach (VAR LIST, EXPR);
any VAR ;

list LIST;

bl ock EXPR ;

Parameters

any VAR
list LI ST
block EXPR

Return

any return value of last execution of EXPR

Description

For each element of thelist L1 ST the expression EXPR is executed in a new context, where the vari-
able VAR is assigned to that value. The return value of the last execution of EXPRis the value of the
f or each construct.

Usage

foreach (integer v, [1,2,3], { returnv; }) ->3

213

214

Name

tolist -- Converts avalueto alist.
tolist

list tolist (VAR ;
any VAR ;

Parameters

any VAR

Return
list

Description

If the value can't be converted to alist, nillist is returned.

215

216

Map Builtins

217

218

Name
haskey -- Check if map has a certain key
haskey

bool ean haskey (MAP, KEY);
map MAP ;
any KEY ;

Parameters
map MAP
any KEY

Return

boolean

219

220

Name

filter -- Filter aMap

filter

map filter (KEY, VALUE, MAP, EXPR);
any KEY ;

any VALUE ;

map MAP ;
bl ocl EXPR ;

Parameters

any KEY
any VALUE
map MAP
blocl EXPR

Return

map
Description

For each key/value pair of the map MAP the expression EXPR is evaluated in a new context, where
the variable KEY is assigned to the key and VAL UE to the value of the pair. If the expression evalu-
atesto true, the key/value pair is appended to the returned map.

Usage

filter ("k, “v, $[1:"a", 2:"b", 3:3, 5:5], { return (k ==v); }) -> $[3:3, 5:5]

221

222

Name

mapmap -- Maps an operation onto all key/value pairs of amap

mapmap

map mapmap (KEY, VALUE, NMAP, EXPR);
any KEY ;

any VALUE ;

map MAP ;

bl ock EXPR ;

Parameters

any KEY
any VALUE
map MAP
block EXPR

Return

map

Description

Maps an operation onto all key/value pairs of the map MAP and thus creates a new map. For each
key/value pair of the map MAP the expression EXPR is evaluated in a new context, where the vari-

able KEY is assigned to the key and VAL UE to the value of the pair. The result is the map of those
evaluations.

The result of each evaluation must be a map with a single entry which will be added to the result
map.

Usage

mapmep (" k, v, $[1:"a", "b"], { return ($[k+10 : v+"x"]); }) -> $[11:"ax", 12:"bx"]
mapmap (“k, ‘v, $[1:"a", 2:"b"], { any a = k+10; any b = v+"x"; map ret = $[a:b]; return (ret); }) -> $[11

223

224

Name

maplist -- Maps an operation onto all elements key/value and create alist
maplist

l'ist maplist (KEY, VALUE, MAP, EXPR);

any KEY ;

any VALUE ;

map MAP ;
bl ock EXPR ;

Parameters

any KEY
any VALUE
map MAP
block EXPR

Return
list

Description

Maps an operation onto all elements key/value pairs of a map and thus creates alist.
Usage

maplist ("k, v, $[1:"a", 2:"b"], { return [k+10, v+"x"]; }) ->[[11, "ax"], [12, "bx"]]

225

226

Name

union -- Union of 2 maps
union

map uni on (MAP1, NAP2);
map MAPL ;
map MAP2 ;

Parameters
map VAP1
map MAP2

Return

map
Description

Interprets two maps as sets and returns a new map that has all elements of the first map MAPland all
of the second map MAP2. If elements have identical keys, values from MAP2 overwrite elements

from MAP1.

227

228

Name
add -- Add akey/value pair to amap
add

map add (MAP, KEY, VALUE);
map MAP ;

any KEY ;

any VALUE ;

Parameters

map MAP
any KEY
any VALUE

Return

map
Description

Adds the key/value pair k : v to the map MAP and returns the newly Created map. If the key KEY
existsin KEY, the old key/value pair is replaced with the new one.

Usage

add ($[a: 17, b: 11], “b, nil) -> $[a: 17, b:nil].

229

230

Name

change -- Change element pair in amap
change

change (MAP, KEY, VALUE);
map MAP ;

any KEY ;
any VALUE ;

Parameters

map MAP
any KEY
any VALUE

Description

DO NOT usethisyet. It's for a special requst, not for common use!!!

Adds the key/value pair KEY : VALUE to the map MAP and returns the map. MAP is modified. If
the key KEY existsin KEY, the old key/value pair is replaced with the new one.

Usage

change ($[.a: 17, .b: 11], .b, nil) -> $[.a: 17, .b:nil].

231

232

Name

size -- Size of amap

size

i nteger size (NMAP);

map MAP ;

Parameters

map MAP

Return

integer

233

234

Name

foreach -- Process the content of a map

foreach

map foreach (KEY, VALUE, NAP, EXPR);
any KEY ;

any VALUE ;

map MAP ;
any EXPR ;

Parameters

any KEY
any VALUE
map MAP
any EXPR

Return

map

Description

For each key:value pair of the map MAP the expression EXPR is executed in a new context, where
the variables KEY is bound to the key and VALUE is bound to the value. The return value of the last
execution of exp isthe value of thef or each construct.

Usage

foreach (integer k, integer v, $[1:1,2:4,3:9], { y2debug("v = %", v); returnv; }) -> 9

235

236

Name

tomap -- Converts a value to a map.

tomap

map tomap (VALUE);
any VALUE ;

Parameters

any VALUE

Return

map

237

238

Name

remove -- Remove key/value pair from a map
remove
map renove (MAP, KEY);

map MAP ;
any KEY ;

Parameters

map MAP
any KEY

Return

map
Usage

rem)ve($[[l: 2

1, 0) ->nil
remove ($[1:2, 3

14], 1) -> $[3:4]

239

240

Name

lookup -- Select a map element
lookup

any | ookup (MAP, KEY, DEFAULT);
map MAP ;

any KEY ;

any DEFAULT ;

Parameters

map MAP
any KEY
any DEFAULT

Return

any

Description

Gets the KEY's value of a map. Returns DEFAULT if the key does not exist. Returns nil if the found
entry has a different type than the default value.

Usage

| ookup ($["a":42], "b", 0) -> 0

241

242

Miscellaneous YCP Builtins

243

244

Name

time -- Return the number of seconds since 1.1.1970.
time

integer time ();
Return

integer

245

246

Name

deep -- Slegps a number of milliseconds.

sleep

void sleep (M LLI SECONDS);
i nteger M LLI SECONDS ;

Parameters

integer M LLI - Time in milliseconds
SECONDS

Return

void

247

248

Name

random -- Random number generator.
random

i nteger random (MAX) ;
i nt eger MAX ;

Parameters

integer MAX

Return

integer Returnsinteger in theinterval (0,MAX).

249

250

Name
srandom -- Initialize random number generator

srandom

i nteger srandom ();

Return

integer

251

252

Name

srandom -- Initialize random number generator.

srandom

voi d srandom (SEED) ;
i nt eger SEED ;

Parameters

integer SEED

Return

void

253

254

Name

eval -- Evaluate a Y CP vaue.

eval
eval ();
Description

See also the builtin ™, which iskind of the counterpart to eval.

Usage

eval (" (1+2)) -> 3
{ terma = ""add(); a = add(a, [1]); a = add(a, 4); return eval(a); } ->[1,4]

255

256

Name

sformat -- Format a String

sformat

string sformat (FORM PAR1l, PAR2, ...);
string FORM ;

any PARL ;

any PAR2 ;
any ... ;

Parameters

string FORM
any PARL
any PAR2
any. ..

Return

string

Description

FORM s a string that may contains placeholders %1, %2, ... Each placeholder is substituted with
the argument converted to string whose number is after the %. Only 1-9 are allowed by now. The
percentage sign is donated with %%.

Usage

sformat ("9 is greater Wothan 94", 3, "five") -> "five is greater %than 3"

257

258

Name

y2debug -- Log a message to the y2log.
y2debug

voi d y2debug (FORNAT) ;
string FORMAT ;

Parameters

string FORMVAT

Return

void
Usage

y2debug ("% is smaller than %®", 7, "13");

259

260

Name

y2milestone -- Log a milestone to the y2log.

y2milestone

void y2m | estone (FORNAT);
string FORMAT ;

Parameters

string FORMVAT

Return

void

261

262

Name

y2warning -- Log awarning to the y2log.

y2warning

voi d y2war ni ng (FORNAT) ;
string FORMAT ;

Parameters

string FORMVAT

Return

void

263

264

Name

yZ2error -- Log an error to the y2log.

y2error

void y2error (FORNAT);
string FORMAT ;

Parameters

string FORMVAT

Return

void

265

266

Name

y2security -- Log a security message to the y2log.

y2security

void y2security (FORVAT);
string FORMAT ;

Parameters

string FORMVAT

Return

void

267

268

Name

y2internal -- Log an internal message to the y2log.

y2internal

void y2internal (FORVAT);
string FORMAT ;

Parameters

string FORMVAT

Return

void

269

270

YCP Path Builtins

271

272

Name

size -- Returns the number of path elements
Size

i nteger size (PATH);
pat h PATH ;

Parameters

path PATH

Return

integer Number of elementsin the path

Usage

size (.hello.world) -> 2
size (.) ->0

273

274

Name

add -- Add a path element to existing path
add

path add (PATH, STR);
pat h PATH ;
string STR ;

Parameters

path PATH
string STR

Return

path

Usage

add (.aaa, "anypath...\n\"") -> .aaa."anypath..

Ao\t

275

276

Name

topath -- Converts avalue to a path.
topath

path topath (STR);
string STR ;

Parameters

string STR

Return

path
Usage

topath ("path") -> .path
topath (".sone.path") -> .sone.path

277

278

YCP String Builtins

279

280

Name

size -- Returns the number of characters of the string s
Size

i nteger size (s);

string s ;
Parameters

string s String
Return

integer Size of string

281

282

Name

issubstring -- searches for a specific string within another string
issubstring

bool ean issubstring (s, substring);
string s ;
string substring ;

Parameters

string s String to be searched

string sub- Pattern to be searched for
string

Return

boolean

Description

Return true, if subst ri ng isasubstring of s.
Usage

i ssubstring ("some text", "tex") -> true

283

284

Name

tohexstring -- Converts ainteger to a hexadecimal string.
tohexstring

string tohexstring (nunber);
i nt eger nunber ;

Parameters

integer nunber Number
Return

string Number in Hex
Usage

tohexstring (31) -> "Ox1f"

285

286

Name

substring -- Return part of a string
substring

string substring (s, start,
string s ;

i netger start

i nteger end ;

Parameters
string s Origina String
inetger st art Start posistion

Optional Arguments

integer end End Posistion

Return

string

Description

Returns the portion of string specified by the start and length parameters.

Usage
substring ("sone text", 5) -> "text"
substring ("some text", 42) ->""
substring ("some text", 5, 2) -> "te"
substring ("sone text", 42, 2) ->""

end) ;

287

288

Name

substring -- Extract a substring
substring

string substring (STRING START, LENGIH);
string STRING ;

i nteger START ;

i nteger LENGTH ;

Parameters

string STRI NG
integer START
integer LENGTH

Return

string

Description

Extract a substring of the string STRI NG starting at START after the first one with length of at most
LENGTH.

Usage

substring ("sone text", 5, 2) -> "te"
substring ("some text", 42, 2) ->""

289

290

Name
find -- Return position of a substring
find

integer find (STRINGL, STRI N&X);
string STRINGIL ;
string STRIN® ;

Parameters

string STRI NGL String

string STRI NG2 Substring

Return

integer If substring is not found find returns *-1".

Description

The “find' function searches string for a specified substring (possibly a single character) and returns
its starting position.

Returns the first position in STRI NGL where the string STRI NG is contained in STRI NGL.
Usage

("abcdefghi", "efg") -> 4
("aaaaa", "z") -> -1

291

292

Name

tolower -- Make a string lowercase
tolower

string tolower (s);
string s ;

Parameters

string s String

Return
string String in lower case

Description

Returns string with all alphabetic characters converted to lowercase.

Usage

tol ower ("aBcDeF") -> "abcdef"

293

294

Name

toupper -- Make a string uppercase
toupper

t oupper ();
Description

Returns string with all alphabetic characters converted to uppercase.
Usage

tol ower ("aBcDeF") -> "ABCDEF"

295

296

Name
toascii -- FIXME
toascii

string toascii (STRING;
string STRING ;

Parameters

string STRI NG

Return

string

Description

Returns a string that results from string STRI NG by copying each character that is below Ox7F
(127).

Usage

toascii ("axx") -> "aB"

297

298

Name

deletechars -- Delete charachters from a string (FIXME)
deletechars

string del etechars (STRING REMOVE);
string STRING ;
string REMOVE ;

Parameters

string STRI NG
string REMOVE Charachters to be removed

Return

string

Description

Returns a string that results from string STRI NG by removing all characters that occur in REMOVE.

Usage

del etechars ("a", "abcdefghijkl mopqrstuvwyz") -> ""

299

300

Name

filterchars -- Filter charachters out of a String
filterchars

string filterchars (STRING i nclude);
string STRING ;
string include ;

Parameters

string STRI NG
string i ncl ude String to be included

Return

string

Description

Returns a string that results from string STRI NG by removing all characters that do not occur in
i ncl ude.

Usage

filterchars ("a", "abcdefghijkl mopgrstuvwxyz") -> "ac"

301

302

Name
mergestring -- Join list elements with a string
mergestring

string nmergestring (Pl ECES, GLUE);
list<string> PIECES ;
string GLUE ;

Parameters

list<string> A List of strings
Pl ECES
string GLUE

Return

string

Description

Returns a string containing a string representation of all the list elements in the same order, with the

glue string between each element.

List elements which are not of type strings are ignored.

Usage
mergestring (["", "abc", "dev", "ghi"], "/") -> "/abc/dev/ghi"
nergestring (["abc "dev “ghi", ""], "/") -> "abc/dev/ghi/"
nergestring ([1, "a", 3], ".") ->"a"
nergestring ([], ".") ->""
mergestring (["abc", "dev", "ghi"],) -> "abcdevghi "
nergestring (["abc", "dev", "ghi"], "123") -> "abcl123dev123ghi"

303

304

Name

findfirstnotof -- Search string for first non matching chars
findfirstnotof

i nteger findfirstnotof (STRING CHARS);
string STRING ;
string CHARS ;

Parameters
string STRI NG
string CHARS

Return

integer the position of the first character in STRI NGthat is not contained in CHARS.

Description

The “findfirstnotof' function searches the first element of string that doesn't match any character
stored in chars and returns its position.

findfirstnotof ("abcdefghi", "abcefghi") -> 3
findfirstnotof ("aaaaa", "a") -> nil

305

306

Name

findfirstof -- Find position of first matching charachtersin string
findfirstof

integer findfirstof (STRING CHARS);
string STRING ;
string CHARS ;

Parameters

string STRI NG
string CHARS Charachtersto find

Return

integer the position of the first character in STRI NGthat is contained in CHARS.

Description

The “findfirstof' function searches string for the first match of any character stored in chars and re-
turnsits position.

If no match is found findfirstof returns “nil".

findfirstof ("abcdefghi", "cxdv") -> 2
findfirstof ("aaaaa", "z") -> nil

307

308

Name
findlastof -- Searches string for the last match
findlastof

i nteger findlastof (STRING CHARS);
string STRING ;
string CHARS ;

Parameters

string STRI NG String

string CHARS Charachtersto find

Return

integer the position of the last character in STRI NGthat is contained in CHARS.
Description

The “findlastof' function searches string for the last match of any character stored in chars and re-
turnsits position.

findl astof ("abcdecfghi", "cxdv") -> 5
findl astof ("aaaaa", "z") -> nil

309

310

Name

findlastnotof -- Searches the last element of string that doesn't match
findlastnotof
i nteger findlastnotof (STRING CHARS);

string STRING ;
string CHARS ;

Parameters

string STRI NG

string CHARS Charachters

Return

integer The position of the last character in STRI NG that is NOT contained in
CHARS.

Description

The “findlastnotof' function searches the last element of string that doesn't match any character
stored in chars and returns its position.

If no match is found the function returns “nil'.

Usage
findl astnotof ("abcdefghi", "abcefghi") -> 3 ('d")
findl ast not of ("aaaaa", "a") -> nil

311

312

Name

regexpmatch -- Searches a string for a POSIX Extended Regular Expression match.

regexpmatch

bool ean regexpmat ch (1 NPUT, PATTERN);
string | NPUT ;
string PATTERN ;

Parameters

string | NPUT

string PATTERN

Return

boolean

Usage
regexpmat ch ("aaabbbccc", "ab") -> true
regexpmat ch ("aaabbbccc", "”“ab") -> fal se
regexpnat ch E:aaabbbccc", "ab+c") -> true

regexpmat ch aaa(bbb)ccc", "\\(.*\\)") -> true

313

314

Name

regexppos -- Returns a pair with position and length of the first match.

regexppos

list regexppos (I NPUT, PATTERN);
string I NPUT ;
string PATTERN ;

Parameters

string | NPUT
string PATTERN

Return

list

Description

If no match isfound it returns an empty list.

Usage
regexppos ("abcd012efgh345", "[0-9]+") -> [4, 3]
("aaabbb", "[0-9]+") ->[]

315

316

Name
regexpsub -- Regex Substitution
regexpsub

string regexpsub (I NPUT, PATTERN, OUTPUT);
string | NPUT ;

string PATTERN ;

string OUTPUT ;

Parameters

string | NPUT
string PATTERN
string OUTPUT

Return

string

Description

Searches a string for a POSIX Extended Regular Expression match and returns OUTPUT with the
matched subexpressions substituted or nil if no match was found.

regexpsub ("aaabbb", "(.*ab)", "s_\\1_ e") -> "s_aaab_e
regexpsub ("aaabbb", "(.*ba)", "s_\\1l e") -> ni

317

318

Name

regexptokenize -- Regex tokenize
regexptokenize

list regexptokenize (I NPUT, PATTERN);
string I NPUT ;
string PATTERN ;

Parameters

string | NPUT
string PATTERN

Return

list
Description

Searches a string for a POSIX Extended Regular Expression match and returns alist of the matched
subexpressions

If the pattern does not match, the list is empty. Otherwise the list contains then matchted subexpres-
sions for each pair of parenthesize in pattern.

If the pattern isinvalid, 'nil" is returned.

Exanpl es:
list e = regexptokeni ze ("aaabbBb", "(.*[A-Z]).*");
Il e == "aaabbB" |

list h = regexptokenize ("aaabbb", " (.*ab)(.*)");

/I h == "aaab", "bb" |

list h = regexptokenize ("aaabbb", "(.*ba).*");

h==T]

list h = regexptokenize ("aaabbb", "(.*ba).* (");

/' h==nil

319

320

Name

tostring -- Converts avalue to a string.

tostring

string tostring (VALUE);
any VALUE ;

Parameters

any VALUE

Return

string

321

322

Name

timestring -- Return time string
timestring

string tinestring (FORMAT, TIME, UTC);
string FORMAT ;

i nteger TIME ;

bool ean UTC ;

Parameters

string FORMVAT
integer TI ME
boolean UTC

Return

string

Description

Combination of standard libc functions gmtime or localtime and strftime.
Usage

timestring ("% 9@ %", time (), false) -> "2004-08-24 14:55:05 CEST"

323

324

Name

crypt -- Encrypt astring

crypt

string crypt (UNENCRYPTED);
string UNENCRYPTED ;

Parameters

string UNEN-
CRYPTED

Return

string

Usage

crypt ("readabl e") -> "Y2PEyAi aeaFy6"

325

326

Name

cryptmds -- Encrypt a string using mds
cryptmds

string cryptnmd5 (UNENCRYPTED) ;
string UNENCRYPTED ;

Parameters

string UNEN-
CRYPTED

Return

string
Usage

cryptmd5 ("readabl e") -> "1BBt zr zzz$zc2vEB7XnA3l q7pQyDsxD0"

327

328

Name
cryptbigerypt -- Encrypt a string using bigcrypt

cryptbigerypt

string crypthbigcrypt (UNENCRYPTED);
string UNENCRYPTED ;

Parameters

string UNEN-
CRYPTED

Return

string
Usage

cryptbi gcrypt ("readabl e") -> "d4br TQrcVbt Ng"

329

330

Name

cryptblowfish -- Encrypt a string with blowfish
cryptblowfish

string cryptbl owfi sh (UNENCRYPTED) ;
string UNENCRYPTED ;

Parameters

string UNEN-
CRYPTED

Return

string

Description

Encrypt the string UNENCRYPTED using blowfish password encryption. The password is not trun-
cated.

Usage

cryptbl owfish ("readable") -> "$2a$05$B3| AUEXB. Bqpy8Pq0TpZt . s7Eydr nkJRUhOZR04YR01pt WOUR147C"

331

332

Name

dgettext -- Trand ates the text using the given text domain
dgettext

string dgettext (textdommin, text);
string textdomain ;
string text

Parameters

string t ext do-
gHing t ext

Return

string

Description

Trangdlates the text using the given text domain into the current language.

Thisisaspecial case builtin not intended for general use. See _() instead.

Usage

dgettext ("base", "No") -> "N e"

333

334

Name

dngettext -- Tranglates the text using alocale-aware plural form handling
dngettext

string dngettext (textdomain, singular, plural, value);
string textdomain ;

string singular

string plural

i nteger val ue ;

Parameters

string t ext do-
gHing si ngul ar
string pl ur al
integer val ue

Return

string

Description

Tranglates the text using alocale-aware plural form handling using the given textdomain.
The chosen form of the trandation depend on theval ue.

Thisisaspecial case builtin not intended for general use. See () instead.

Usage

dngettext ("base", "% File", "% Files", 2) -> "% soubory"

335

336

YCP Term Builtins

337

338

Name

size -- Returns the number of arguments of theterm t .

size

i nteger size (TERM;
term TERM ;

Parameters

term TERM

Return

integer Size of the term

339

340

Name

add -- Add valueto term
add

termadd (TERM VALUE);
term TERM ;
any VALUE ;

Parameters

term TERM
any VALUE

Return

term

Description

Adds the value VALUE to the term TERM and returns the newly created term. As always in YCP,

TERMis not modified.

Usage

add (sym(a), b) -> sym(a, b)

341

342

Name

symbolof -- Returns the symbol of theterm t .
symbolof

synbol synbol of (TERM;
term TERM ;

Parameters

term TERM

Return

symbol
Usage

synbol of (" hronmbuch (18, false)) -> "“hronbuch

Name

select -- Select item from term

select

sel ect (TERM |TEM DEFAULT);
term TERM ;

i nteger I TEM ;
any DEFAULT ;

Parameters

term TERM
integer | TEM
any DEFAULT

Description

Gets the i 'th value of the term t . The first value has the index 0. The call sel ect ([1, 2,
3], 1) thusreturns 2. Returns the def aul t if the index is invalid or the found value has a dif-
fetent typethat def aul t .

Usage

select (“hirn (true, false), 33, true) -> true

346

Name

toterm -- Converts avalue to aterm.

toterm

termtoterm (VALUE);
any VALUE ;

Parameters

any VALUE

Return

term

347

Name

remove -- Remove item from term
remove

termrenove (TERM i);
term TERM ;
integer i ;

Parameters

term TERM
integer i

Return

term
Usage

renove (" fun(l, 2), 1) -> “fun(2)

349

350

Name

argsof -- Returns the arguments of aterm.

argsof

list argsof (TERM;
term TERM ;

Parameters

term TERM

Return
list
Usage

argsof (“fun(1, 2)) ->1[1, 2]

351

352

Part Il. User Interface Reference

Table of Contents

XI1. Event-related Ul BUiltin FUNCLIONScoovviiiiiiiiii e 357
L] 8= o1 | 359
ULEZPOHTNDUL e 361
UL TimMEOULUSEITNPUL ... 363
ULWAITFOTEVENE .ot 365

XL UL BUITEIN COMMENAS ... e e e e 367
UL SEtMOUIENAME ... e 369
UL GEMOTUIENEIME ... e e e e e e 371
ULSEILANGUAGE ..eeeeeeei ettt e e 373
Ul GEPrOAUCINGIME ...oeeiieiee e e e e e e 375
UL SEtProdUCINEIME ...t 377
UL SEtCONSOIEFONE ...t e 379
UL:SEtKeyboardoovviiiii e 381
(0] B T =0 (U7 = 383
ULZTUSEITNPUL <.t 385
ULEZPOHTNPUL e 387
UL TimEOULUSEITNPUL ... e 389
ULWAITFOTEVENT .ooviici e e e e e 391
0] @] o7 o1 T oo P 393
0] @] o7 o1 T oo T 395
UL:CIOSEDIAIOQ() +evvvvneeenttnieeeeiiie ettt ettt e et e et eeeeie e eeees 397
UL ChangeWIdgeLooeeeiiieiiii e 399
UL:QUENYWILGEL ...eeveeeiei et 401
UIREPIBCEWIAGEL ...t 403
UL:WizardCOommandceveneeeeiseeeeiie et e e e e e e e eees 405
ULZISEIFOCUS .ot 407
ULZBUSYCUISOE ettt ettt et e e e e eeaeees 409
0B e [z TS ol = o U 411
ULZINOIMAI CUISOE .ttt e e e e e e eenaeees 413
UIIMEKESCIEENSIOLccviieei et 415
UL DUMPWIAQEITIEE . oevniiiiieiie e e e e e 417
ULRECOIAMBEIO .ttt e e e et eeees 419
UL StOPRECOIAINGMBEIO ...t 421
ULIPLBYMBEIO et 423
ULFaKEUSEITNPUL e 425
ULZGIYPRN e 427
0 T D1 o = 1Y/ g (o N 429
(0B 2 == od = 1Yo | 431
UL ::PostponeShortCULCNECKuiiiiiiiiieiiiii e 433
ULCheCKSNOMCULS ... e 435
ULIWIAQEIEXISES .oieveieiiei et e 437
UIRUNPKGSEIECHON ... 439
Ul ASKFOrEXIStINGDITECIOY ...ovviiiiiieiiieeii e e e e e e e e e e 441
UIASKFOrEXISHNGFIE ovniii e e e 443
Ul ASKFOrSaveR IENAMEveiee e 445
UL SEtFUNCEIONKEYS ...t 47
ULZWEM/SCR oottt e e e e e et eaaae 449
UIZTRECOOE ...t ee e 451

X111, Standard (Mandatory) WIdQELScevvniiiiiieiiie e e e 453
AAA_AI-WIAGELS ..o 455
REPIACEPOINT ...t 459
Bty e 461
HSPBCING ..t 463
0 PP 467
M e e 469
HSQUBSN .. 471
HWEIGNE .o, 473

355

356

LAl i 481
T 1 = U SPPPP 485
[0 |V AT 487
PUSHBULIONoveiiii et ea s 491
MENUBULTON ..ottt e e ens 493
(01 7= 0 4= o) TP 495
RAJIOBULIONot 497
RadiOBUONGIOUD ...vuiiiiiiiiiieiie e e e e e e e e e e e e e e e aaaeees 499
L= =11 Y/ 501
MUIILINEEAIToeeieeiii e 507
SEECHIONBOX ..vuiitiiiii e 511
MUItISEIECHIONBOXuiveiiiiiie e e 515
COMBOBOX ...ttt 519
LT PP 523
L= o = 2P 527
PrOgrESSBalr .. cveiiiie e 533
IMAE i 535
T 1T = o PSP 541
PaCKagESEIECLONcee i 543
PROSPECIAL . .eeiiiice e 545
XIV. Special (0ptional) WIAQELScvvvnieiiiiiii e e e e 547
HaSSPECIAIWIAGEL ... 549
BarGraph .. .o 551
ColoredLabeloenii s 555
DOWNIOBAPTOGIESSuietiiieii ettt e e e et eea e 561
DUMBTED .. 563
VMUILIPrOgreSSMELEr ...covviiiii i 567
S 1o = TSP 569
PartitioNSPIITIEr ...cceeeeee e 575
D = SPPPP 579
LI 0L PSPPSR 581
WIZAN e 583

Event-related Ul Builtin Functions

357

358

Name

Ul::Userlnput -- Waits for user input and returns awidget ID.

Ul::Userlnput

Description

Ul::Userlnput() waits for the user to do some input. Normally this means it waits until the user
clicks on a push button.

Widgets that have the notify option set can also cause Userlnput() to return - i.e. to resume the con-
trol flow in the Y CP code with the next statement after Userlnput().

As long as the user does not do any such action, Userlnput() waits, i.e. execution of the Y CP code
stops in Userlnput(). In particular, entering text in input fields (TextEntry widgets) or selecting an
entry in alist (SelectionBox widget) does not make Userlnput() continue unless the respective wid-
get has the notify option set.

Userlnput() returns the ID of the widget that caused it to return. Thisis usually a button ID. It does
not return any text entered etc.; use Ul::QueryWidget() to retrieve the contents of the dialog's wid-
gets.

Such awidget ID can be of any valid Y CP type, but using simple types like symbol, string or maybe
integer is strongly recommended.

Although it is technically still possible, using complex data types like map, list or even term (which
might even contain Y CP code to be executed with eval()) is discouraged. Support for this may be
dropped without notice in future versions.

Since it depends on exactly what types the Y CP application developer choses for his widgets, User-
Input()'s return type is any. You may safely use a variable of the actual type you are using (usualy
symbol or string).

Usage:

any widget_id = U::Userlnput();

Example:

/'l Userlnput.ycp
Il
/| Exanpl e for common usage of Ul ::Userlnput()

{

Build dialog with two input fields and three buttons.

I
I
// Qutput goes to the log file: ~/.y2log for nornmal users
/'l or /var/log/YaST2/y2log for root.

string nane = "Tux";
string addr = "Antarctica";
Ul :: OpenDi al og(
" VBox(
“TextEntry(id(name), "&Nane:", nane),
“TextEntry(id(addr), "&Address:", addr),
* HBox(

“PushButton(id(ok), "&XK"),
“PushButton(id(cancel), "&Cancel"),
“PushButton(id(help), "&Hel p")
)

)
)3

synmbol widget_id =nil; // Al widget IDs used here are synbols

/'l Event |oop

359

Example:

r epeat
widget _id = U::Userlnput();
if (widget_id == "ok)
! /1 process "OK" button

y2nmi | estone("OK button activated");

/] Retrieve wi dget contents

name = Ul :: QueryWdget(id(nane), "Value);
addr = Ul :: QueryWdget(id(addr), “Value);

}
else if (widget_id == "“cancel)

/] process "Cancel" buttton
/1 or wi ndow nmanager close button (this also returns "cancel)

y2m | estone(“"Cancel button activated");
}
else if (widget_id == “help)

/| process "Hel p* button

y2m | estone("Help button activated");

}
/1 No other "else" branch necessary: None of the TextEntry widget has
Il (

the "notify option set, so none of themcan make Userlnput() return.
} until (widget_id == "ok || widget_id == "cancel);
/Il Close the dialog - but only after retrieving all information that nay
I/ still be stored only in its w dgets: QueryWdget() works only for
/1 widgets that are still on the screen!

U ::C oseDial og();

/1 Dunp the values entered into the log file
y2m | estone("Nane: % Address: %", nanme, addr);

360

Name

Ul::Polllnput -- Checks for pending user input. Does not wait. Returns awidget ID or nil if no input
isavailable.

Ul::Polllnput

Description

PollInput() is very much like UserInput(), but it doesn't wait. It only checks if there is a user event
pending - the user may have clicked on a button since the last call to PollInput() or Userlnput().

If thereis one, the ID of the widget (usually a button unless other widgets have the notify option set)
isreturned. If thereis none, nil (the YCP value for "nothing", "invalid") is returned.

Use PollInput() to check if the user wishes to abort operations of long duration that are performed in
aloop. Natice that PollInput() will result in a"busy wait", so don't simply use it everywhere instead
of Userlnput().

Notice there is also TimeoutUserInput() and WaitForEvent() that both accept a millisecond timeout
argument.

Usage:

any widget_id = U::Polllnput();

Example:
/1 Polllnput.ycp
Il
/1 Exanpl e for common usage of Ul ::PollInput()
{ : : :
/1 Build dialog with two |abels and a "stop" button.
i nteger count = 0;
i nteger count_nmax = 10000;
Ul : : OpenDi al og(
* VBox(
“Label ("Calculating..."),
“Label ("id(count), sformat("% of %", count, count_max)),
*PushButton(id(stop), "&Stop")
)
D3
any widget_id = nil;
/'l Event |oop
r epeat
widget _id = U::Polllnput();
/1 Simul ate heavy cal cul ation
sl eep(200); // milliseconds
/1 Update screen to show that the programis really busy
count = count + 1,
Ul :: ChangeW dget (i d(count), “Value, sformat("% of 92", count, count_nmax));
Ul :: Recal cLayout(); // Mght be necessary when the | abel becones wi der
} until (widget_id == “stop || count >= count_nmax);
U ::C oseDial og();
}

361

362

Name

Ul::TimeoutUserInput -- Waits for user input and returns a widget 1D. Returns ID “timeout if no in-
put is available for timeout milliseconds.

Ul::TimeoutUserl nput

Description

TimeoutUserInput() is very much like Userlnput(), but it returns a predefined ID “timeout if no user
input is available within the specified (millisecond) timeout.

Thisis useful if there is a reasonable default action that should be done in case of atimeout - for ex-
ample, for popup messages that are not important enough to completely halt a longer operation
forever.

User interface style hint: Use this with caution. It is perfectly OK to use timeouts for informational
messages that are not critical in any way (" Settings are written™, "Rebooting the newly installed ker-
nel"), but definitely not if there are several alternatives the user can choose from. As a general rule
of thumb, if adialog containsjust an "OK" button and nothing else, TimeoutUserInput() is appropri-
ate. If there are more buttons, chances are that the default action will cause disaster for some users.

Remember, timeouts are nearly always a desperate means. They are always both too short and too
long at the same time: Too short for users who know what message will come and too long for users
who left to get some coffee while the machine is busy.

Another possible use of TimeoutUserInput() would be to periodically update the screen with data
that keep changing (time etc.) while waiting for user input.

Usage:

any widget_id = U ::TimeoutUserlnput(integer timeout_mllisec);

Example

/1 Ti meout User | nput . ycp
Il
/1 Exanpl e for common usage of Ul ::TimeoutUserl nput ()

{
/1 Build dialog with two | abels and an "OK" button.

30;
200;
count down_sec * 1000 / interval _mllisec;

i nt eger countdown_sec
integer interval _mllisec
i nt eger count down

Ul : : OpenDi al og(
" VBox(
“Label ("Rebooting Planet Earth..."),
“Label ("id(seconds), sformat("%", countdown_sec)),
;PushButton(‘i d(ok), “opt(default), "&X')

any id = nil;
/1 Event | oop
r epeat
1 id = U::TimoutUserlnput(interval _mllisec);
if (id=="tineout)
I /1 Periodic screen update
countdown = countdown - 1;
integer seconds_|left = countdown * interval _millisec / 1000;

Ul :: ChangeW dget (i d(seconds), "Value, sformat("9%1", seconds_left));
}

} until (id == "ok || countdown <= 0);

363

364

Example

}

Ul ::d oseDial og();

Name

Ul::WaitForEvent -- Waits for user input and returns an event map. Returns ID “timeout if no input
is available for timeout milliseconds.

Ul::WaitForEvent

Description

WaitForEvent() is an extended combination of Userlnput() and TimeoutUserlnput(): It waits until
user input is available or until the (millisecond) timeout is expired. It returns an event map rather
than just asimple ID.

In the case of timeout, it returns a map with a timeout event.

The timeout argument is optional. If it isn't specified, WaitForEvent() (like Userlnput()) keeps wait-
ing until user input is available.

Use WaitForEvent() for more fine-grained control of events. It is useful primarily to tell the differ-
ence between different types of events of the same widget - for example, if different actions should
be performed upon selecting an item in a SelectionBox or a Table widget. Notice that you still need
the notify option to get those eventsin the first place.

On the downside, using WaitForEvent() means accessing the ID that caused an event requires a map
lookup.

Notice that you still need Ul::QueryWidget() to get the contents of the widget that caused the event.
In the general case you'll need to QueryWidget most widgets on-screen anyway so delivering that
one value along with the event wouldn't help too much.

Important: Don't blindly rely on getting each and every individual event that you think should come.
The Ul keeps track of only one pending event (which is usually the last one that occured). If many
events occur between individual WaitForEvent() calls, all but the last will be lost. Read the intro-
duction for the answer why. It is relatively easy to programm defensively in a way that losing indi-
vidual events doesn't matter: Also use QueryWidget() to get the status of al your widgets. Don't
keep redundant information about widget statusin your code. Ask them. Always.

Usage

map event = Ul ::WaitForEvent();

map event = Ul ::WaitForEvent(integer timeout_mllisec);

Example

/1 Wit For Event . ycp
Il
/| Exanpl e for commobn usage of Ul::WiitForEvent ()
{) .) :
Build dialog with a selection box and sone buttons.

I
I
// Qutput goes to the log file: ~/.y2log for nornmal users
Il or /var/log/YaST2/y2log for root.

integer tinmeout_mllisec = 20 * 1000;

Ul :: OpenDi al og(_

VBoX (
“Sel ectionBox(id(pizza), “opt(notify, “immediate),
" [Sel ect your Pi&zza:",
“item("id(napoli), "Napoli"),
“item(Tid(funghi), "Funghi"),

365

Example

“item(Tid(sal am), “Salam*"),
“item(id(prociutto), "Prosciutto"),
“iten(id(stagioni), "Quattro Stagioni"),
“item(Tid(chef), "Ala Chef", true)
|
:).
HBox (
“PushButton(id(" ok), "&X"),
“PushButton(id(cancel), "&Cancel"),
" HSpaci ng(),
“PushButton(id(details), "&Details...")
)
)
DE
map event = $[];
any id =nil;
/1 Event |oop
r epeat
{
event = Ul ::WaitForEvent(tineout_millisec);
id = event["ID']:nil; // We'Ill need this often - cache it
if (id=="pizza)
{
if (event["EventReason"]:nil == "Activated")
/1 Handl e pizza "activate" (double click or space pressed)
y2m | estone("Pizza activated");
id = "details; // Handle as if "Details" button were clicked
} :) :
else if (event["EventReason"]:nil == "Sel ecti onChanged")
/1 Handl e pizza sel ection change
y2m | estone("Pizza selected");
}
}
if (id=="details)
{
y2nm | estone(" Show details");
}
if (id=="tinmeout)
/1 Handl e tinmeout
y2m | estone("Ti neout detected by ID');
if (event["EventType"]:nil == "TinmeoutEvent") // Equival ent
// Handl e tineout
y2m | estone("Tineout detected by event type");
/1 Open a popup dial og
Ul :: OpenDi al og(" VBox(
“Label ("Not hungry?"),
“PushButton(opt(default), "&XK")
Ul :: Ti meout User | nbut(10 * 1000); // Automatically close after 10 seconds
U ::C oseDialog();
}
} until (id == "ok || id == “cancel);

Ul ::C oseDial og();

366

Ul bulltin commands

367

368

Name

Ul ::SetModulename -- Set Module Name
Ul::SetM odulename

voi d Set Modul enane (nodul e);
string nodul e ;

Parameters

string nodul e

Return

void
Usage

Set Modul enanme("inst_environnent")

369

370

Name

Ul::GetM odulename -- Get the name of aModule

Ul::GetM odulename

string GetMdul enane ();

Return

string
Usage

Get Mbdul enane()

371

372

Name

Ul::Setlanguage -- Set the language of the Ul
Ul::SetLanguage

voi d SetLanguage (|l ang, encoding);
string lang ;
string encoding ;

Parameters

string | ang Language selected by user

Optional Arguments

string encodi ng

Return

void
Usage

Set Language("de_DE@uro")
Set Language("en_GB")

373

374

Name

Ul::GetProductName -- Get Product Name
Ul::GetProductName
string Get Product Nane ();

Return

string Product Name

Description

Returns the current product name ("SuSE Linux", "United Linux", etc.) for display in dialogs. This
can be set with SetProductName().

Note: In help texts in RichText widgets, a predefined macro & amp;product; can be used for the
Same purpose.

Usage

sformat ("Wel come to %", GetProductName());

375

376

Name

Ul ::SetProductName -- set Product Name
Ul::SetProductName

voi d Set Product Nane (prod);
string prod ;

Parameters

string pr od

Return

void

Description

Set the current product name ("SUSE Linux", "United Linux", etc.) for display in dialogs and in
RichText widgets (for help text) with the RichText & amp;product; macro.

This product name should be concise and meaningful to the user and not cluttered with detailed ver-
sion information. Don't use something like "SUSE Linux 12.3-i786 Professional”. Use something
like "SUSE Linux" instead.

Usage

Set Product Name(" SuSE HyperVall");

377

378

Name

Ul ::SetConsoleFont -- Set Console Font
Ul::SetConsol eFont

voi d Set Consol eFont (console magic, font, screen_map, unicode_nap,
encodi ng) ;

string consol e_magic

string font ;

string screen_nap ;

string unicode_map ;

string encodi ng

Parameters

string con-
stong f wagi c
string

steingemi rap
gioiog emepdi ng

Return

void
Usage

Set Consol eFont ("(K", "lat2u-16.psf", "latin2u.scrnmap", "lat2u.uni", "latinl")

379

380

Name

Ul::SetKeyboard -- Set Keyboard
Ul::SetKeyboard
voi d Set Keyboard ();

Return

void
Usage

Set Keyboard()

381

382

Name
Ul::GetLanguage -- Get Language
Ul::GetLanguage

string GetlLanguage (strip_encodi ng);
bool ean strip_encoding ;

Parameters

boolean
strip_encodin

Return

string

Description

Retrieves the current language setting from of the user interface. Since YaST2 is a client server ar-
chitecture, we distinguish between the language setting of the user interface and that of the configur-
ation modules. If the module or the trandator wants to know which language the user currently uses,
it can call Get Language. Thereturn valueis an 1SO language code, such as"de" or "de DE".

If "strip_encoding” is set to "true”, al encoding or similar information is cut off, i.e. everything
from the first "." or "@" on. Otherwise the current contents of the "LANG" environment variable is
returned (which very likely endswith ".UTF-8" since thisis the encoding YaST?2 usesinternally).

383

384

Name

Ul::Userlnput -- User Input
Ul::Userlnput
any Userlnput ();

Return

any

Description
Waits for the user to click some button, close the window or activate some widget that has the

“noti fy option set. The return value is the id of the widget that has been selected or * cancel if
the user selected the implicit cancel button (for example he closes the window).

385

386

Name

Ul::Polllnput -- Poll Input
Ul::Polllnput

any Pol |l nput ();

Return

any

Description

Doesn't wait but just looks if the user has clicked some button, has closed the window or has activ-
ated some widget that hasthe " not i f y option set. Returnsthe id of the widget that has been selec-
ted or “ cancel if the user selected the implicite cancel button (for example he closes the win-
dow). Returns nil if no user input has occured.

387

388

Name

Ul::TimeoutUserlnput -- User Input with Timeout
Ul::TimeoutUserlnput

any Ti meout Userlnput (timeout _mllisec);
integer timeout_mllisec ;

Parameters

integer
tinmeout _mlli

feturn

any

Description

Waits for the user to click some button, close the window or activate some widget that has the
“not i fy option set or until the specified timeout is expired. The return value is the id of the wid-
get that has been selected or * cancel if the user selected the implicit cancel button (for example
he closes the window). Upon timeout, ~ t i meout isreturned.

389

390

Name

Ul::WaitForEvent -- Wait for Event
Ul::WaitForEvent

map Wi t For Event ();

Optional Arguments

timeout_millisec

Return

map
Description

Extended event handling - very much like UserInput(), but returns much more detailed information

about the event that occured in a map.

391

392

Name
Ul::OpenDiaog -- Opens a new dialog.
Ul::OpenDiaog

bool ean OpenDi al og (wi dget);
term wi dget ;

Parameters

termw dget

Return

boolean Returns true on success.

Description

Opensanew dialog. wi dget isaterm representation of the widget being displayed.

See the widget documentation for details what widgets are available. All open dialogs are arranged
in a stack. A newly opened dialog is put on top of the stack. All operations implicitely refer to the
topmost dialog. The user can interact only with that dialog. The application does not terminate if the
last dialog is closed.

Usage

OpenDi al og(" Label ("Please wait..."))

393

394

Name
Ul::OpenDiaog -- Open a Dialog with options
Ul::OpenDiaog

bool ean OpenbDi al og (options, w dget);
termoptions ;
term w dget ;

Parameters

term opt i ons
termwi dget

Return

boolean

Description

Same as the OpenDialog with one argument, but you can specify options with a term of the form

T opt.

The option ™ def aul t si ze makes the dialog be resized to the default size, for example for the Qt

interface the -geometry option is honored and for ncurses the dialog fills the whole window.

The option ™ cent er ed centers the dialog to the desktop. This has no effect for popup diaogs that

are achild of a defaultsize dialog that is currently visible.

The option ™ decor at ed add awindow border around the dialog, which comesin handy if no win-

dow manager is running. This option may be ignored in non-graphical Uls.

“smal | Decor at i ons tells the window manager to use only minimal decorations - in particular,
no title bar. This is useful for very small popups (like only a one line label and no button). Don't

overuse this. This option isignored for “defaultsize dialogs.

The option ~ war ncol or displaysthe entire dialog in a bright warning color.

Theoption ™ i nf ocol or isalessintrusive color.

Usage

OpenDi al og(“opt(“defaultsize), “Label("H™"))

395

396

Name

Ul::CloseDialog() -- Close an open dialog
Ul::CloseDiaog()
bool ean Cl oseDi al og() ();

Return

boolean Returns true on success.

Description

Closes the most recently opened dialog. Itisan error to call Cl oseDi al og if nodialog is open.

397

398

Name

Ul::ChangeWidget -- Change widget contents

Ul::ChangeWidget

bool ean ChangeW dget (wi dgetld, property, newval ue);
synbol wi dgetld ;

symbol property ;
any newval ue ;

Parameters

symbol wi dget - Can aso be specified as "id(any widgetld)
I d

symbol pr op-

emt yewval ue

Return

boolean Returns true on success.

Description

Changes a property of a widget of the topmost dialog. i d specified the widget to change, pr op-
er t y specifiesthe property that should be changed, newval ue givesthe new value.

399

400

Name
Ul::QueryWidget -- Query Widget contents
Ul::QueryWidget

any QueryWdget (wi dgetld, property);
synbol w dgetld ;
synmbol | term property ;

Parameters

symbol wi dget - Can aso be specified as "id(any id)
Id

symboljterm

property

Return

any

Description

Queries a property of awidget of the topmost dialog. For example in order to query the current text
of a TextEntry with id "name, you write Quer yW dget (i d(" nane), ~Value).Insome
cases the propery can be given as term in order to further specify it. An example is Quer yW d-
get(“id(“table), “Item 17)) for atable whereyou query acertainitem.

401

402

Name

Ul::ReplaceWidget --

Ul::ReplaceWidget

bool ean Repl aceWdget (id, newwdget);

synmbol id ;
t erm neww dget

Parameters

symbol i d
term newW dget

Return

boolean

Description

Replaces a complete widget (or widget subtree) with an other widget (or widget tree). Y ou can only
replace the widget contained in a Repl acePoi nt . As parameters to Repl aceW dget specify
theid of the ReplacePoint and the new widget.

403

404

Name

Ul::WizardCommand -- Run awizard command
Ul::WizardCommand

bool ean W zar dCommand (w zar dComrand) ;
termw zardComand ;

Parameters

termwi zar d-
Conmmand

Return

boolean Returns true on success.

Description

Issue a command to awizard widget with ID ‘wizardld'. < This builtin is not for general use. Use the
Wizard.ycp module instead.

405

406

Name

Ul::SetFocus -- Set Focus to the specified widget
Ul::SetFocus

bool ean Set Focus (wi dgetld);
synmbol wi dgetld ;

Parameters

symbol wi dget -
Id

Return

boolean Returns true on success (i.e. the widget accepted the focus).

407

408

Name

Ul::BusyCursor -- Sets the mouse cursor to the busy curso
Ul::BusyCursor
voi d BusyCursor ();

Return

void

Description
Sets the mouse cursor to the busy cursor, if the Ul supports such a feature.

This should normally not be necessary. The Ul handles mouse cursors itself: When input is possible
(i.e. inside Userlnput()), there is automatically a normal cursor, otherwise, there is the busy cursor.
Override this at your own risk.

409

410

Name

Ul::RedrawScreen -- Redraws the screen
Ul::RedrawScreen
voi d RedrawScreen ();

Return

void

Description
Redraws the screen after it very likely has become garbled by some other output.

This should normally not be necessary: The (specific) Ul redraws the screen automatically
whenever required. Under rare circumstances, however, the screen might have changes due to cir-
cumstances beyond the Ul's control: For text based Uls, for example, system commands that cause
output to every tty might make this necessary. Call thisin the Y CP code after such a command.

411

412

Name

Ul::Normal Cursor -- Sets the mouse cursor to the normal cursor
Ul::Normal Cursor

voi d Normal Cursor ();

Return

void

Description

Sets the mouse cursor to the normal cursor (after BusyCursor), if the Ul supports such a feature.

This should normally not be necessary. The Ul handles mouse cursors itself: When input is possible
(i.e. inside Userlnput()), there is automatically a normal cursor, otherwise, there is the busy cursor.
Override this at your own risk.

413

414

Name

Ul ::MakeScreenShot -- Make Screen Shot
Ul::MakeScreenShot

voi d MakeScreenShot (fil enane);
string filenane ;

Parameters

stringfi | ename

Return

void

Description

Make a screen shot if the specific Ul supports that. The Qt Ul opens a file selection box if filename
is empty.

415

416

Name

Ul::DumpWidgetTree -- Debugging function
Ul::DumpWidgetTree

voi d DunmpW dget Tree ();

Return

void

Description

Debugging function: Dump the widget tree of the current dialog to the log file.

417

418

Name

Ul::RecordMacro -- Record Macro into afile
Ul::RecordMacro

voi d RecordMacro (nmacroFil eNane);
string macroFil eNane ;

Parameters

string macr oFi -
| eNane

Return

void

419

420

Name

Ul::StopRecordingMacro -- Stop recording macro
Ul::StopRecordingMacro
voi d St opRecordi nghacro ();

Return

void

Description

Stop macro recording. This is only necessary if you don't wish to record everything until the pro-

gram terminates.

421

422

Name

Ul::PlayMacro -- Play arecorded macro
Ul::PlayMacro

voi d PlayMacro (nacroFil eNane);

string macroFil eNane ;

Parameters

string macr oFi -
| eNane

Return

void

Description

Execute everything in macro file "macroFileName". Any errors are sent to the log file only. The

macro can be terminated only from within the macro file.

423

424

Name

Ul::FakeUserInput -- Fake User Input
Ul::FakeUserl nput
voi d FakeUser | nput ();

Optional Arguments

any next User -
I nput

Return

void

Description

Prepare afake value for the next call to Userinput() - i.e. the next Userlnput() will return exactly this

value. Thisis only useful in connection with macros.

If called without a parameter, the next call to Userlinput() will return "nil".

425

426

Name

Ul::Glyph -- Return a special character (a'glyph')
Ul::Glyph

string dyph (glyph);

symbol gl yph ;

Parameters

symbol gl yph
Return

string

Description

Return a specia character (a'glyph') according to the symbol specified.

Not al Uls may be capable of displaying every glyph; if a specific Ul doesn't support it, a textual

representation (probably in plain ASCII) will be returned.

This is aso why there is only a limited number of predefined glyphs: An ASCII equivalent is re-

quired which is sometimes hard to find for some characters defined in Unicode / UTF-8.

Please note the value returned may consist of more than one character; for example, Glyph(

"ArrowRight) may return something like "->".

If an unknown glyph symbol is specified, 'nil* is returned.

427

428

Name

Ul::GetDisplayInfo -- Get Display Info
Ul::GetDisplayInfo

map Get Di splaylnfo ();

Return

map
Description

Get information about the current display and the Ul's capabilities.

429

430

Name

Ul::RecalcLayout -- Racalculate Layout
Ul::RecalcLayout

voi d Recal cLayout ();

Return

void

Description

Recompute the layout of the current dialog.
Thisis a very expensive operation.

Use this after changing widget properties that might affect their size - like the a Label widget's
value. Call thisonce (!) after changing all such widget properties.

431

432

Name

Ul::PostponeShortcutCheck -- Postpone Shortcut Check
Ul::PostponeShortcutCheck

voi d Post poneShort cut Check ();

Return

void

Description

Postpone keyboard shortcut checking during multiple changes to a dialog.

Normally, keyboard shortcuts are checked automatically when a dialog is created or changed. This
can lead to confusion, however, when multiple changes to adialog (repeated ReplaceWidget() cals
) cause unwanted intermediate states that may result in shortcut conflicts while the dialog is not final
yet. Use this function to postpone this checking until all changes to the dialog are done and then ex-
plicitly check with CheckShort cut s(). Do this before the next call to User | nput () or
Pol | I nput () to make sure the dialog doesn't change "on the fly" while the user tries to use one
of those shortcuts.

The next call to User I nput () or Pol | I nput () will automatically perform that check if it
hasn't happened yet, any an error will beissued into the log file.

Use only when really necessary. The automatic should do well in most cases.

The normal sequence looks like this:

Post poneShort cut Checks() ;
Repl aceW dget ();
Repl aceWdget(...);

Repl aceWdget(...);
CheckShortcuts();

Uéérlnput();

433

434

Name

Ul::CheckShortcuts -- Perform an explicit shortcut check after postponing shortcut checks.

Ul::CheckShortcuts
voi d CheckShortcuts ();

Return

void

Description

Perform an explicit shortcut check after postponing shortcut checks. Use this after calling Post -
poneShort cut Check() .

The normal sequence looks like this:

Post poneShort cut Checks();

Repl aceWdget(...);
Repl aceWdget(...);
Repl aceWdget(...);

CheckShortcuts();
User | nput () ;

435

436

Name

Ul::WidgetExists -- Check whether or not awidget with the given ID currently exists
Ul::WidgetExists

bool ean W dget Exi sts (wi dgetld);

synbol wi dgetld ;

Parameters

symbol wi dget -
Id

Return

boolean

Description

Check whether or not a widget with the given ID currently exists in the current dialog. Use this to
avoid errors in the log file before changing the properties of widgets that might or might not be
there.

437

438

Name

Ul::RunPkgSelection -- Initialize and run the PackageSel ector widget
Ul::RunPkgSelection

any RunPkgSel ection (pkgSelld);
any pkgSelld ;

Parameters

any pkgSel I d

Return

any Returns “cancel if the user wishesto cancel his selections.

Description
Not to be used outside the package selection
Initialize and run the PackageSel ector widget identified by 'pkgSelld'.

Black magic to everybody outside. ;-)

439

440

Name

Ul::AskForExistingDirectory -- Open a directory selection box and prompt the user for an existing
directory.

Ul::AskForExistingDirectory

string AskForExistingDirectory (startDir, headline);
string startDir ;
string headline ;

Parameters

stringstartDir istheinitial directory that is displayed.

string headl i ne isan explanatory text for the directory selection box. Graphical Uls may omit
that if no window manager is running.

Return

string Returns the selected directory name or nil if the user canceled the operation.

Description

Open adirectory selection box and prompt the user for an existing directory.

441

442

Name

Ul::AskForExistingFile -- Open afile selection box and prompt the user for an existing file.
Ul::AskForExistingFile

string AskForExistingFile (startWth, filter, headline);
string startWth ;

string filter

string headline ;

Parameters

string st art - istheinitial directory or file.

Wth

stringfilter isone or more blank-separated file patterns, e.g. "*.png *.jpg"

string headl i ne isan explanatory text for the file selection box. Graphical Uls may omit that if
no window manager is running.

Return

string Returns the selected file name or nil if the user canceled the operation.

Description

Open afile selection box and prompt the user for an existing file.

Name

Ul::AskForSaveFileName -- Open afile selection box and prompt the user for afile to save datato.

Ul::AskForSaveFileName

string AskFor SaveFi | eNane (startWth, filter, headline);
string startWth ;

string filter

string headline ;

Parameters

string st art - istheinitial directory or file.

Wth

stringfilter isone or more blank-separated file patterns, e.g. "*.png *.jpg"

string headl i ne isan explanatory text for the file selection box. Graphical Uls may omit that if
no window manager is running.

Return

string Returns the selected file name or nil if the user canceled the operation.

Description

Open afile selection box and prompt the user for a file to save data to. Automatically asks for con-
firmation if the user selects an existing file.

446

Name

Ul::SetFunctionKeys -- Set the (default) function keys for a number of buttons.
Ul::SetFunctionKeys

voi d Set Functi onKeys (fkeys);
map fkeys ;

Parameters

map f keys
Return

void

Description

This function receives a map with button labels and the respective function key number that should
be used if on other “opt("key_F..) is specified.

Any keyboard shortcuts in those labels are silently ignored so this is safe to use even if the Ul's in-
ternal shortcut manager rearranges shortcuts.

Each call to this function overwrites the data of any previous calls.
Usage

Set Functi onKeys($["Back": 8, "Next": 10, ...]);

447

Name
Ul::WFM/SCR -- callback

Ul::WFM/SCR

any WFM SCR (expression);
bl ock expression ;

Parameters

block expr es-
sion
Return

any

Description

Thisis used for a callback mechanism. The expression will be sent to the WFM interpreter and eval-

uated there. USE WITH CAUTION.

449

450

Name

Ul::Recode -- Recode encoding of string from or to "UTF-8" encoding.

Ul::Recode

any Recode (from to, text);
string from;

string to ;

string text

Parameters

string f r om
stringt o
string t ext

Return

any

Description

Recode encoding of string from or to "UTF-8" encoding. One of from/to must be "UTF-8", the other
should be an iso encoding specifier (i.e. "1SO-8859-1" for western languages, "1SO-8859-2" for

eastern languages, etc.)

451

452

Standard (mandatory) widgets

453

454

Name

AAA_All-Widgets -- Generic options for all widgets

AAA_All-Widgets

AAA Al l -Wdgets ();

Options

notify

di sabl ed

hstretch

vstretch

hvstretch

aut oShor t cut

key F1
key F2
key Fxx
key_F24

key_none

Make Userlnput() return on any action in this widget. Normally Userlnput()
returns only when a button is clicked; with this option on you can make it re-
turn for other events, too, e.g. when the user selects an item in a SelectionBox
(if “opt("notify) is set for that SelectionBox). Only widgets with this option
set are affected.

Set thiswidget insensitive, i.e. disable any user interaction.

The widget will show this state by being greyed out (depending on the specif-
icUl).

Make this widget stretchable in the horizontal dimension.

Make this widget stretchable in the vertical dimension.

Make this widget stretchable in both dimensions.

Automatically choose a keyboard shortcut for this widget and don't complain
in the log file about the missing shortcut. Don't use this regularly for all wid-
gets - manually chosen keyboard shortcuts are almost always better than those
automatically assigned. Refer to the style guide for details. This option is in-

tended used for automatically generated data, e.g., RadioButtons for software
selections that come from file or from some other data base.

(NCurses only) activate this widget with the F1 key

(NCurses only) activate this widget with the F2 key

(NCurses only) activate this widget with the Fxx key

(NCurses only) activate this widget with the F24 key

(NCurses only) no function key for this widget

455

456

Properties

keyEvent s
(NCurses only) Make Userlnput() / WaitForEvent() return on keypresses with-
in this widget. Exactly which keystrigger such akey event is Ul specific. This
isnot for general use.

Properties

boolean Enabl ed the current enabled/disabled state

boolean Not i fy the current notify state (see also “opt("notify))

string W dget - the widget class of thiswidget (Y Label, Y PushButton, ...)
gri?lg%ebug La- a(possibly translated) text describing this widget for debugging
gt(railng Di al og- a(possibly trandated) text describing this dialog for debugging
DebugLabel

Description

This is not a widget for general usage, this is just a placeholder for descriptions of options that all

widgets have in common.

Use them for any widget whenever it makes sense.

Usage

Examples

{
(Mnimalistic) Deno for automatically generated shortcuts.
See 'AutoShortcut2.ycp' for a nore realistic exanple.

/
/
/
/
/| Please note this is _not_ how this option is neant to be used:

/ It is intended for automatically generated data, not for fixed w dgets.
/ 1f you know your wi dget |abel at this point, nanually add a keyboard

/ shortcut; this will alnost always be nuch better than anything what can
; be automatical |y generated.

/
/

—— e —

There shoul dn't be any conpl ai nts about shortcuts in the log file when this
Ul : : OpenDi al og(

" VBox(
" Radi oBut t onGr oup(

“Frame("Software Sel ection”,
" HVSquash(

" VBox(

“Left(" RadioButton(®
“Left(" RadioButton(®
“Left(" RadioButton(®
“Left(" RadioButton(®
“Left(" RadioButton(®
“Left(" RadioButton(®
)

W
;PushButton("&OK")
DE
Ul :: Userlnput();

: Ul ::d oseD al og();

is started.

“autoShortcut),
“autoShortcut),
“autoShortcut),
“autoShortcut),
“autoShortcut),
“autoShortcut),

"M ni mum Syst ¢
"M ni mum X11 ¢
" Ghone
"Defaul t (KDE)
"Default + Off
"Al nmost Ever yt

Syst em

Examples

{
Denp for automatically generated shortcuts.

This is a nore realistic exanple - it points out how the "autoShortcut
option is intended to be used. See 'AutoShortcutl.ycp' for a sinpler exanple.

—~—————
~————

list sw selections =

[

"M ni mum Systent,

"M ni mum X11 Systent,

"CGnonme Systent,

"Default (KDE)",

"Office System (KDE Based)",
"Al nost Everything",
1s

termradi o_box = "VBox();

foreach (“sel, sw selections, " {
radi o_box = add(radio_box, “Left("RadioButton(opt(autoShortcut), sel)));

)
y2m | estone("radio_box: %", radio_box);

Ul :: OpenDi al og(
" VBox(
" Radi oBut t onGr oup(
“Frame("Software Sel ection”,
;H\/Squash(radi o_box)

iPushButton(D &G("))
DK

U :: Userlnput();
U ::C oseD al og();

There shoul dn't be any conpl ai nts about shortcuts in the log file when this is started.

457

458

Name

ReplacePoint -- Pseudo widget to replace parts of adialog
ReplacePoint

Repl acePoint (child);
termchild ;

Parameters

teemchi | d the child widget

Description

A ReplacePoint can be used to dynamically change parts of a dialog. It contains one widget. This
widget can be replaced by another widget by calling Repl aceW dget(“id(id), new
child), whereid isthetheid of the new child widget of the replace point. The ReplacePoint
widget itself has no further effect and no optical representation.

Usage

“ReplacePoint(“id(“rp), “Empty())

Examples

U :: OpfsnDi al og(
" VBox(

“Repl acePoint(“id(rp), “Label("This is a label")),
“PushButton(id(change), "Change")));
Ul :: Userlnput();
Ul :: ReplaceWdget ("id(rp), ~PushButton("This is a PushButton"));
U ::Userlnput();
Ul :: Repl aceWdget ("id(rp), " CheckBox("This is a CheckBox"));
U :: Userlnput();
Ul :: Repl aceWdget ("id(rp), ~HBox(PushButton("Buttonl"), “~PushButton("Button2")));
Ul :: Userlnput();
U ::C oseD al og();

459

460

Name

Empty -- Stretchable space for layout
Empty, HStretch, V Stretch, HV Stretch

Enpty ()
HSt ret ch
VStretch
HVStretc

(),
(),
(.

h ();

Description

These four widgets denote an empty place in the dialog. They differ in whether they are stretchable
or not. Enpt y is not stretchable in either direction. It can be used in a ™ Repl acePoi nt , when
currently no real widget should be displayed. HSt r et ch and VSt r et ch are stretchable horizont-
aly or vertically resp., HVSt r et ch is stretchable in both directions. You can use them to control

the layout.

Usage

“HStretch()

Examples

u:: q)engi al og(
* VBox (

“Label (" Sonme text goes here"),
“Label ("This is some nore text, that is quite |long, as you can see."),

" HBox(

* PushBut t on(" &OK"),

;HStretch()

)

DE
any ret = U ::Userlnput();
Ul ::C oseDialog();
return ret;

).

}
{
I/ Layout exanpl e:
Il
/1 Build a dialog with three equal sized buttons.
Il
Il The equal “~HWight()s will nmake the buttons equal sized.
/1 \Wen resized larger, all buttons will retain their size.
/] Excess space will go to the HStretch() w dgets between the
/1 buttons, i.e. there will be enpty space between the buttons.
Ul : : OpenDi al og(
" HBox(
“HwWei ght (1, “PushButton(“opt(default), "&XK")
“HStretch(),
" HWei ght (1, "~ PushButton("&Cancel everything")),
“HStretch(),
" HWei ght (1, " PushButton("&Hel p"))
)
)3
Ul :: Userlnput();
U ::CoseD al og();
}

461

462

Examples

Cancel everything

Help

Name
HSpacing -- Fixed size empty space for layout

HSpacing, V Spacing

HSpacing ();
VSpaci ng ();

Optional Arguments

integer|float si ze

Description

These widgets can be used to create empty space within a dialog to avoid widgets being cramped to-
gether - purely for aesthetical reasons. Thereis no functionality attached.

Do not try to use spacings with excessive sizes to create layouts! Thisis very likely to work for just
one Ul. Use spacings only to separate widgets from each other or from dialog borders. For other
purposes, use ~ HWi ght and * VWi ght and describe the dialog logically rather than physically.

The si ze given is measured in units roughly equivalent to the size of a character in the respective
Ul. Fractional numbers can be used here, but text based Uls may choose to round the number as ap-
propriate - even if this means simply ignoring a spacing when its size becomes zero.

If si ze is omitted, it defaults to 1. HSpaci ng will create a horizontal spacing with default width
and zero height. VSpaci ng will create avertical spacing with default height and zero width.

With options hst r et ch or vst r et ch, the spacing will at least take the amount of space specified
with si ze, but it will be stretchable in the respective dimension. Thus, * HSpaci ng(~ opt (
“hstretch) isequivalentto™ HBox("~ HSpacing(0.5), "HSpacing(0.5))

Usage

“HSpacing(0.3)

Examples

{
/1 Build dialog with one text entry field, 4 Beatles buttons and an OK button.
Ul : : OpenDi al og(
" VBox(

" VSpaci ng(),

* HBox(
“Label (" Name: "),
“TextEntry(id(name), "")

“VSpaci ng(0. 2),

" HBox(
“PushButton(id(john), "&ohn"), "~HSpacing(O0.5),
“PushButton(id(paul), "&Paul"), "HSpacing(3),
“PushButton(id eorge), "&George"), HSpacing(0.5),
“PushButton(id ingo), "&Ringo")

QT

" VSpaci hg(0.5),
; PushButton(id(ok), "&OK")

463

Examples

/1 Vit for user input.
any button = nil;

/1 Input loop that only the OK button will |eave.
/! The 4 Beatles buttons will just propose a nane.
r epeat

button = Ul :: Userlnput();

if (button == “john) U ::ChangeWdget(id(nane), "Value, "John Lennon");
else if (button == “paul) Ul ::ChangeWdget (id(nane), "Value, "Paul MCartney");
else if (button == “george) U ::ChangeWdget(id(nane), "~Value, "George Harrison");
else if (button == “ringo) U ::ChangeWdget(id(name), "Value, "Ringo Starr");

} until (button == "ok);

Ul ::d oseDial og();

{
Layout exanpl e:

Build a dialog with three equal sized buttons,
this tine with some spacing in between.

The equal "Hweight()s will nake the buttons even sized.
When resized larger, all buttons will retain their size.
Excess space will go to the HSpacing() wi dgets between the
buttons, i.e. there will be enpty space between the buttons.

Notice the inportance of “opt(hstretch) for the " HSpacing()s
here: This is what makes the HSpacing()s grow. O herw se, they
woul d retain a constant size, and the buttons woul d grow.

——— e e —
—— e e e e e — —

Ul : : OpenDi al og(
" HBox (
“HwWei ght (1, “PushButton(“opt(default), "&X"')),
" HSpaci ng(" opt (" hstretch), 3),
“HWei ght (1, "PushButton("&Cancel everything")),
" HSpaci ng(" opt (" hstretch), 3),
;I—N@i ght (1, "~PushButton("&Hel p"))

)

Ul :: Userlnput();
Ul ::d oseD al og();

QK Cancel everything Help
R S
list itemistl =
“item(id(3), "Spaghetti", 8),
“item(id(4), "Steak Sandwich", 12),
“item(Cid(1), “"Chili",),
“item(Tid(2), "Salam Baguette", nil)

item(id(0), "Mercedes", 60000),
“iten(id(1), "AUDI", 50000) ,
Citen(id(2), "wwW, 40000) ,
“iten(id(3), "BW, 60000) ,

item(id(3), "Porsche", 80000)

1;
list itenslists = [itemistl, itemist2];
integer listnum= 0;

Ul : : OpenDi al og(
* VBox (
“Label ("Prices")
" HSpaci ng(40), /

" HBox(
“VSpaci ng(10),

| make the table and thus the dial og W de enough

Examples

“Table(id(table), “header("Nane", "price"), itenistl)

* HBox(
“HCent er (" PushButton(id(next), "Change &Table Contents")),
“PushButton(id(cancel), "&C ose")
)

)
Wi
while (U ::Userlnput() !'= "cancel)
{
Ilstnum—l— I'istnum
: ChangeW dget (° |d(table), “ltens, select(itenslists, listnum nil));

U ::C oseDial og();

Prices
Mame price
Chili b
malami Eaguette
spaghetii g
=mteak Sandwich 12
Change Table Contents Close
{
list itemistl =
“item("id(3), "Spaghetti" 8)
“iten(id(4), "Steak sandwi ch” 12),
“item(Tid(1), "Chili" 6),
]jlter’r(id(2), "Salam Baguette", nil)
list itemist2 =
[item(id(0), "Mercedes", 60000)
item(id(1), "AUD" 50000) ,
iten(id(2), "ww, 40000) ,
item(id(3), "BMV, 60000) ,
item("id(3), " Por sche” 80000)

list itemslists = [itemistl, itemist2];
integer listnum= 0;

: QpenDi al og(
VBox(
“Label ("Prices"),
‘HSpa((:i ng(40), // make the table and thus the dial og wi de enough
* HBox
VSpaci ng(10)
“Table(1 d(” tabl e), "~ header("Nane", "price"), itenlistl)

* HBox(
“HCent er (" PushButton(id(next), "Change &Table Contents")),
“PushButton(id(cancel), "&C ose")

465

Examples

)
)

while (U ::Userlnput() != "cancel)

! listnum= 1 - listnum

) Ul :: ChangeW dget ("id(table), “Items, select(itenslists, listnum nil));
} U ::C oseDial og();

Prices

Mame price

Chili b

=alami Eaguette

Spaghetii =

Steak Sandwich 12

Change Table Contents Close

466

Name

Left -- Layout alignment
Left, Right, Top, Bottom, HCenter, V Center, HV Center

Left (child, enabled);
termchild ;

bool ean enabl ed

Ri ght (child, enabled);
termchild ;

bool ean enabl ed

Top (child, enabled);
termchild ;

bool ean enabl ed

Bottom (chil d, enabl ed);
termchild ;

bool ean enabl ed

HCenter (child, enabled);
termchild ;

bool ean enabl ed

VCenter (child, enabled);
termchild ;

bool ean enabl ed

HVCenter (child, enabl ed);
termchild ;

bool ean enabl ed

Parameters

teemchi |l d The contained child widget

Optional Arguments

boolean enabl ed trueif ...

Description

The Alignment widgets are used to control the layout of a dialog. They are useful in situations,
where to awidget is assigned more space than it can use. For example if you have a VBox contain-
ing four CheckBoxes, the width of the VBox is determined by the CheckBox with the longest |abel.
The other CheckBoxes are centered per default.

With " Left (wi dget) you tell widget that it should be layouted leftmost of the space that is
availabletoit. Ri ght, Top and Bot t omare working accordingly. The other three widgets center
their child widget horizontally, vertically or in both directions.

The important fact for all alignment widgets is, that they make their child widget stretchable in the
dimension itisaligned.

Usage

“Left(" CheckBox("Crash every five minutes"))

467

Examples

Examples

{
Ul : : OpenDi al og(
* VBox

“Label ("This is a long | abel which nmakes space"),
" HBox(

“Label ("A"),

“HCent er (" Label ("B")),

" Label ("C")

)
)

DE
Ul :: Userlnput();
Ul ::d oseD al og();

}
{
Ul : : OpenDi al og(
* VBox
“Label ("This is a very long |abel that nmakes space"),
* HBox(
" PushButton("Normal "),
“HCent er (" PushBut t on(" HCenter"))
)
);)
UI::UserInpuf();
U ::C oseD al og();
}
{ . . :
Ul :: OpenDi al og(" opt (" def aul tsi ze),
* VBox
“VCent er (" PushButton(opt(vstretch), "Button 1")),
“VCent er (" PushButton(opt(vstretch), "Button 2")),
“VCent er (" PushButton(opt(vstretch), "Button 3"))
);)
UI::UserInpuf();
U ::C oseD al og();
}
{
Ul : : OpenDi al og(
* VBox
“PushButton("This is a very long button - it reserves extra space for the |abel."),
" HBox(
“PushButton(opt(hstretch), "Stretchable button"),
“Repl acePoint(id(rp), " Label ("Label"))
)
); :
UI::UserInpu{();
Ul :: Repl aceWdget ("id(rp), " Left(Label ("Left")));
U :: Userlnput();
Ul :: Repl aceWdget (“id(rp), “Right(Label("Right")));
Ul ::Userlnput();
Ul :: Repl aceWdget (“id(rp), “HCenter(Label ("HCenter")));
Ul :: Userlnput();
}

468

Name

Frame -- Frame with label
Frame
Frame (I abel,

string | abel ;
termchild ;

child):

Parameters

string | abel title to be displayed on the top | eft edge

teemchi |l d the contained child widget

Properties

string Val ue the label text

Description

This widget draws a frame around its child and displays atitle label within the top left edge of that
frame. It is used to visually group widgets together. It is very common to use a frame like this

around radio button groups.

Usage
“Frame("~ Radi oButtonGroup(“id(rb), “VBox(...)
Examples
{
Ul : : OpenDi al og(
" VBox(
“Frame ("lnportant"

)Label("l—ielio, Vorld ")
;PushButtoh(" &OK™")

D
Ul :: Userlnput();
Ul ::C oseD al og();

{
Ul :: OpenDi al og(~ VBox(
“Frame ("CPU &Speed",

" Radi oBut t onG oup(_

)

DE

" Radi oButton("
" Radi oBut t on("
" Radi oButton("
" Radi oBut t on("

Normal " 1)),
Over cl ocked")),
Red Hot"))

Mel ting", true))

469

470

Examples

1

U

Ul :
u::

E
“PushButt on(" &0K")
)

::Lberlnpu%;():
u::

Cl oseDi al og();

{
OpenDi al og(
" VBox(
“Franme(" Shrinkabl e Textentries",
" HBox (

“TextEntry(opt(shrinkable), "
“TextEntry(opt(shrinkable),

“Text Entry(opt (shrinkable),
“TextEntry(opt (" shrinkable),

*PushBut ton(" opt (*default), "&OK")
)

:Userlnpzjé();

d oseDi al og() ;

Shrinkable Textentries

z 3 7

ok |

HanNR

——e—

Name

HSquash -- Layout aid: Minimize widget to its nice size
HSquash, V Squash, HV Squash

HSquash (child);

termchild ;

VSquash (child);

termchild ;

HvVSquash (child);
termchild ;

Parameters

teemchi |l d the child widget

Description

The Squash widgets are used to control the layout. A HSquash widget makes its child widget non-
stretchable in the horizontal dimension. A VSquash operates verticaly, a H/Squash in both di-
mensions.

You can used this for example to reverse the effect of * Lef t making a widget stretchable. If you
want to make a VBox containing for left aligned CheckBoxes, but want the VBox itself to be non-

stretchable and centered, than you enclose each CheckBox witha ™ Left(..) and the whole
VBox withaHSquash(...).
Usage

HSquash(~“TextEntry("Nane:"))

Examples

{
Ul :: OpenDi al og(" opt (" def aul tsi ze),
* VBox

“VCenter(// Makes the HSquash stretchable vertically
“HSquash(// l\/l(akes the VBox nonstretchable horizontally
* VBox
“Left (" CheckBox("short")),
“Left (" CheckBox("longer")),
“Left(CheckBox("even |onger")),
“Left (" CheckBox("yet even longer"))))),
;Left(‘PushButton("bottomIeft"))

)

Ul :: Userlnput();
Ul ::d oseD al og();

471

472

Name

HWeight -- Control relative size of layouts
HWeight, VWeight

HWei ght (wei ght, child);
i nt eger wei ght ;
termchild ;

Wi ght (wei ght, child);
i nteger weight ;
termchild ;

Parameters

integer wei ght the new weight of the child widget

teemchi |l d the child widget

Description

This widget is used to control the layout. When a HBox or VBox widget decides how to devide re-
maining space amount two stretchable widgets, their weights are taken into account. This widget is
used to change the weight of the child widget. Each widget has a vertical and a horizontal weight.
Y ou can change on or both of them. If you use HVW\éi ght , the weight in both dimensions is set to
the same value.

Note: No real widget is created (any more), just the weight value is passed to the child widget.

Usage

“HwWei ght (2, " Sel ectionBox("Language"))

Examples

{
Ul : : OpenDi al og(
" HBox(
“HWei ght (1, “PushButton("First Button (W 50)")),
“PushButton("Small Button"),
;I—Nbi ght (1, " PushButton("Second Button (Weight 50 - this one determines the total w dth"

DE
U :: Userlnput();
Ul ::d oseDial og();

{
Layout exanpl e:
Build a dialog with three equal sized buttons.

The equal "Hweight()s will make the buttons equal sized.
When resized larger, all buttons will retain their size.
Excess space will go to the HStretch() w dgets between the
buttons, i.e. there will be enpty space between the buttons.

~——————
—~———— — — — —

473

Examples

Ul : : OpenDi al og(
" HBox

(
“HWei ght (1, “PushButton(“opt(default), "&X")),
“HStretch(),
“HWei ght (1, "~ PushButton("&Cancel everything")),
“HStretch(),
" HWei ght (1, "~ PushButton("&Hel p"))
)
DE
Ul ::Userlnput();
U ::CoseD alog();
}
(8] 4 Cancel everything Help
{
/] Layout exanpl e:
Il
/1 Build a dialog with three equal sized buttons,
// this tinme with some spacing in between.
Il
/1 The equal “HWight()s will nmake the buttons even sized.
/1 When resized larger, all buttons will retain their size.
/| Excess space will go to the HSpacing() w dgets between the
/1 buttons, i.e. there will be enpty space between the buttons.
Il
/1 Notice the inportance of “opt(hstretch) for the "HSpacing()s
/1 here: This is what nakes the HSpacing()s grow. O herw se, they
/1 would retain a constant size, and the buttons would grow.
Ul :: OpenDi al og(
* HBox
“HWei ght (1, "~ PushButton(“opt(default), "&X"')),
~HSpaci ng(" opt (" hstretch)) 9,
" HWei ght (1, PushButton("&Cancel everything")),
‘HSpam ng(opt(hstretch), 3),
) ght (1, "~ PushButton(" &Hel p"))
DE
Ul :: Userlnput();
U ::C oseD al og();
}
(8]:4 Cancel everything Help
{
/] Layout exanpl e:
Il
/1 Build a dialog with three equal sized buttons.
Il
/1 The equal "Hweight()s will nake the buttons equal sized.
/1 \When resized, all buttons will resize equally in order to
/1 maintain the equal |ayout weights.
Ul : : OpenDi al og(
~ HBox(
“HWei ght (1, "~ PushButton(“opt(default), "&X"')),
" HwWei ght (1, "~ PushButton("&Cancel everything")),
" HwWei ght (1, "~ PushButton("&Hel p"))
)
DE
Ul ::Userlnput();
Ul ::d oseD al og();
}

474

Examples

8] Cancel everything Help

{
Layout exanpl e:

Build a dialog with three widgets with different weights and
two wi dgets w thout any weight.

Al widgets will get at least their "nice size". The weighted
ones may get even nore to neintain their share of the overall
wei ght .

Upon resize all widgets will resize to naintain their
respective weights at all times. The non-wei ghted widgets wll
retain their "nice size" regardl ess whether or not they are
stretchabl e.

——— e e e — -
—— e e e i — —

Ul : : OpenDi al og(
* HBox (
“Hwei ght (33, “PushButton(“opt(default), "OK\n33%)),
“PushButton(“opt(hstretch), "Apply\nNo Weight"),
" HWei ght (33, “PushButton("Cancel\n33%)),
“PushButton("Reset to defaults\nNo Wight"),
;I—N@i ght (66, " PushButton("Hel p\ n66%))

)

Ul :: Userlnput();
Ul ::d oseD al og();

014 Apphy Cancel Reset to defaults Help
3% Mo Weight 3% Mo Weight BETS

{
Layout exanpl e:
Build a dialog with three widgets with different weights.
Wei ghts do not need to add up to 100 or any other speci al
nunber, but it hel ps the application programmer to keep track
of the percentage of each part of the layout.

Noti ce how the second button commands the overall size of the
dialog since it has the largest "nice size" to "weight" ratio.

Upon resize all widgets will resize to naintain their
respective weights at all tinmes.

~_— e e e e e — e ——
—— e e e e — —

Ul : : OpenDi al og(

* HBox(
“HwWei ght (25, "PushButton(“opt(default), "OK\n25%)),
" HWei ght (25, “PushButton("Cancel everything\n25%)),
" HWei ght (50, " PushButton("Hel p\ n50%))
)

DE

U :: Userlnput();
U ::C oseD al og();

Ok Cancel everything Help
29% 29% al%

475

476

Examples

—— e e e —
—— e e e i — — —

ul

{
Layout exanpl e:
Build a dialog with three widgets with different weights.
Wei ghts do not need to add up to 100 or any other special
nunber, but it helps the application programer to keep track
of the percentage of each part of the |ayout.

Noti ce how the second button commands the overall size of the
dialog since it has the largest "nice size" to "weight" ratio.

Upon resize all widgets will resize to maintain their
respective weights at all tines.

:: OpenDi al og(
" HBox(

“HwWei ght (1, “PushButton(“opt(default), "OK\n25%)
“HwWei ght (1, “PushButton("Cancel everything\n25%)),
“HwWei ght (2, " PushButton("Hel p\ n50%))
)
DE
;i Userlnput();

:: 0 oseD al og();

QK Cancel everything
23% 29%

Help
a5

)

Name

HBox -- Generic layout: Arrange widgets horizontally or vertically
HBox, VBox

HBox ();
VBox ();

Options

debuglLayout
verbose logging

Optional Arguments

termchi | d1 thefirst child widget

termchi | d2 the second child widget

termchi | d3 the third child widget

teemchi | d4 the fourth child widget (and so on...)
Description

The layout boxes are used to split up the dialog and layout a number of widgets horizontally (HBox

) or vertically (VBox).

Usage

HBox(“PushButton(“id(ok), "OK'), “PushButton(“id("cancel),

Examples

{
Ul : : OpenDi al og(
" VBox(
“PushButton("First"),
" PushButton(" Second"),
; PushBut ton(" Third")

DE
Ul :: Userlnput();
Ul ::d oseD al og();

U :: OpfanDi al og(
" HBox(

“PushButton("First"),
“PushBut t on(" Second") ,
“PushButton("Third")
)

477

478

Examples

ul
ul

—~——————
—~_—————

ul

ul
ul

)5
;i User | nput () ;
:: 0 oseD al og();

{
Layout exanpl e:

Build a dialog with three equal sized buttons.
The equal “Hweight()s will neke the buttons equal sized.
When resized, all buttons will resize equally in order to
mai ntain the equal |ayout weights.
:: OpenDi al og(
~ HBox(
" HwWei ght (1, "~ PushButton(“opt(default), "&X"')),
" HwWei ght (1, "~ PushButton("&Cancel everything")),
" HwWei ght (1, "~ PushButton("&Hel p"))
)
DE
::Userlnput();

:: 0 oseDial og();

8] 4 Cancel everything

Help

—— e i m— — —
~_——————————

Layout exanpl e:
Build a dialog with three wi dgets wi thout any weights.

Each widget will get its "nice size", i.e. the size that makes
the widget's contents fit into it.

Upon resize the widgets will keep their sizes if enlarged
(since none of themis stretchable), i.e. there will be enpty
space to the right.

Ul : : OpenDi al og(
" HBox(
“PushButton(“opt(default), "OK'),
“PushButton("Cancel everything"),
“PushButton("Hel p*)
)
DE
Ul :: Userlnput();
Ul ::CoseD al og();
QI Cancel everything | Help
/1 Layout exanple:
Il
// Build a dialog with three widgets with different weights and
/1 two wi dgets w thout any weight.
/1
/1l Al widgets will get at least their "nice size". The weighted
/1 ones may get even nore to nmintain their share of the overall
/1 weight.
Il

Examples

Upon resize all widgets will resize to maintain their
respective weights at all times. The non-wei ghted widgets wll
retain their "nice size" regardl ess whether or not they are
stretchabl e.

~———
—_~——

Ul : : OpenDi al og(
" HBox(
“HwWei ght (33, “PushButton(“opt(default), "OK\n33%)),
“PushButton(“opt(hstretch), "Apply\nNo Weight"),
“HWei ght (33, “PushButton("Cancel\n33%)),
“PushButton("Reset to defaults\nNo Wight"),
;I—Nbi ght (66, " PushButton("Hel p\ n66%))

)

Ul:: Userlnput();
Ul ::d oseD al og();

014 Apphy Cancel Reset to defaults Help
3% Mo Weight 3% Mo Weight BETS

479

480

Name
Label -- Simple static text
Label, Heading

Label (I abel);
string |abel ;
Headi ng (| abel);
string | abel ;

Parameters

string | abel

Options

outputField

make the label look like an input field in read-only mode

Properties

string Val ue

Description

the label text

A Label issometext displayed in the dialog. A Headi ng is atext with afont marking it as head-

ing. The text can have more than one line, in which case line feed must be entered.

Usage

“Label ("Here goes sone text\nsecond line")

Examples

U :: CpfenDi al og(
* VBox(

“Label ("Hello, World!"),
> PushBut t on(" &0K")
)

DE
Ul :: Userlnput();
Ul ::doseDial og();

{
Ul : : OpenDi al og(
" VBox

“Label ("Label s can have\nnul tiple lines."
" PushButt on(" &XK")

)

)

481

Examples

)5
Ul :: Userlnput();
U ::C oseD al og();

}
A .
// Build dialog with one |abel, 4 Beatles buttons and an OK button.
Ul : : OpenDi al og(
* VBox(
“Label ("Sel ect your favourite Beatle:"),
“Label ("id(beatle), “opt(outputField), " "),
* HBox(
“PushButton(id(john), "John"),
“PushButton(id(paul), "Paul"),
“PushButton(id(george), "George"),
“PushButton(id(ringo), "Ringo")),
“PushButton(id(ok), "&X
DE
/1 Wait for user input.
any button = nil;
/1 Input loop that only the OK button will I|eave.
/1l The 4 Beatles buttons will just propose a nane.
r epeat
{
button = Ul :: Userlnput();
if (button == “john) Ul ::ChangeWdget (id(beatle), "Value, "John Lennon");
else if (button == “paul) Ul::ChangeWdget(id(beatle), "~Value, "Paul MCartney");
else if (button == “george) Ul ::ChangeWdget(id(beatle), “Value, "George Harrison");
else if (button == “ringo) U ::ChangeWdget(id(beatle), "Value, "Ringo Starr");
/'l Recal culate the layout - this is necessary since the | abel w dget
/| doesn't reconpute its size upon changing its val ue.
Ul : : Recal cLayout () ;
} until (button == "ok);
/1l Retrieve the |abel's value.
string nane = (string) U ::QueryWdget(id(beatle), "Value);
/1 O ose the dialog.
/1 Renmenber to read values fromthe dialog' s wi dgets BEFORE closing it!
Ul ::C oseDial og();
/1 Pop up a new dialog to echo the input.
Ul : : OpenDi al og(
* VBox(
“VSpaci ng(),
" HBox(
“Label ("You sel ected:"),
“Label (" opt (" outputField), nane),
" HSpaci ng()
‘PushBufton(‘opt(‘def ault), "&OK")
);)
UI::UserInpuf();
U ::C oseD al og();
}

{
/1 Build dialog with one | abel, 4 Beatles buttons and an OK button.
Ul : : OpenDi al og(
" VBox(
“Label ("My favourite Beatle:"),
/] "~ Heading(id(favourite), "Press one of the buttons bel ow'),
“Heading("id(favourite), "(please select one)"),
" HBox(
“PushButton(id(john), "John"),
“PushButton(id(paul), "Paul"),
“PushButton(id(george), "George"),
“PushButton(id(ringo), "Ringo")),
; PushButton(id(ok), "&OK")

)

/1 Wit for user input.
any button = nil;

/'l Input loop that only the OK button will I|eave.

482

Examples

/'l The 4 Beatles buttons will just propose a nane.

r epeat
button = Ul :: Userlnput();
if (button == “john) U ::ChangeWdget(id(favourite), "Value, "John Lennon");
else if (button == “paul) Ul ::ChangeWdget(id(favourite), ~Value, "Paul MCartney");
else if (button == “george) U ::ChangeWdget(id(favourite), “Value, "George Harrison");
else if (button == “ringo) U ::ChangeWdget(id(favourite), “Value, "Ringo Starr");

} until (button == "ok);
A 4

// Build dialog with one |abel, 4 Beatles buttons and an OK button.

Ul :: OpenDi al og(

VBox (
“Label ("My favourite Beatle:"),
/| "~ Heading(id(favourite), "Press one of the buttons bel ow'),
“Heading(id(favourite), "(please select one)"),
* HBox(
“PushButton(id(john), "John"),
“PushButton(id(paul), "Paul"),
“PushButton(id(george), "George"),
“PushButton(id(ringo), "Ringo")),
; PushButton(id(ok), "&OK")
DE
/1 Wait for user input.
any button = nil;
/1 Input loop that only the OK button will |eave.

/'l The 4 Beatles buttons will just propose a nane.

r epeat

{
button = Ul :: Userlnput();
if (button == “john) Ul ::ChangeWdget(id(favourite), "Value, "John Lennon");
else if (button == “paul) Ul ::ChangeWdget(id(favourite), ~Value, "Paul MCartney");
else if (button == “george) U ::ChangeWdget(id(favourite), “Value, "George Harrison");
else if (button == “ringo) U ::ChangeWdget(id(favourite), “Value, "Ringo Starr");

} until (button == "ok);

{
// Build dialog with one | abel,

Ul : : OpenDi al og(
 VBox(

)3

“Label ("My favourite Beatle:"),

/1l

“Headi ng("id(favourite),
“Heading(id(favourite),

~ HBox(

“PushButton(id(" ok),
)

/1 Wit for user input.

any button

/1 1 nput

r epeat

{
button =
if (
else if (
else if (
else if (

} until (but

| oop that

nil;

“PushButton(id(john),
“PushButton(id(paul),

“PushButton(id(george),

*PushBut ton(i d("

only the OK button wll
/1 The 4 Beatles buttons will

j ust

Ul :: Userlnput();

button
but t on
but t on
button

ton ==

ok

“john)
" paul

ri ngo),

" &OK")

"John"),

"Paul "),
'CGeorge"),
Ringo”)),

| eave.
propose a nane.

Ul : : ChangeW dget ("i d(" favourite),
) Ul ::ChangeW dget (" id(favourite),
“george) U ::ChangeWdget (" id(favourite),

‘ringo) Ul ::ChangeWdget(id(favourite),

D

4 Beatles buttons and an OK button.

*Val ue,

" Val ue,
*Val ue,

“Val ue,

" Paul

"Press one of the buttons bel ow'),
"(pl ease sel ect one)"),

John Lennon");
McCart ney");

"CGeorge Harrison");

"Ringo Starr");

483

484

Name

RichText -- Static text with HTML-like formatting
RichText

Ri chText (text);
string text ;

Parameters

string t ext

Options

pl ai nText

don't interpret text asHTML
aut oScrol | -
Down automatically scroll down for each text change
shri nkabl e

make the widget very small
Properties
string Val ue the RichText's text contents
Description

A Ri chText isatext areawith two magjor differencesto aLabel : The amount of datait can con-
tain is not restricted by the layout and a number of control sequences are allowed, which control the
layout of the text.

Usage

"RichText("This is a bold text")

Examples

/1 Exanple for a RichText w dget

{
Ul :: OpenDi al og("opt (" defaul tsize),
* VBox

"RichText ("<h3>Ri chText exanpl e</ h3>"

" not "
" be "
" avail abl e, </ font>"

+ "<p>This is a <i >Ri chText</i> w dget. </ p>"

+ "<p>It's very much like <i>HTM.</i1>, but not quite as powerful.</p>"
+ "<p>bol d and <i >italic</i> you can rely on.</p>"
+ "<p>"

+ "col ored "

+ " text "

+ " mi ght "

+ " or "

+ " m ght "

+

+

+

485

Examples

+ " dependi ng "

+ " on </ f ont >"

+ " the </ font >"

+ " Ul . </ font >"

+ "</ p>"

+ "<p>The product nane is automatically replaced by the U."
+ "Use the special macro &anp; product; for that."
+ "</ p><p>"

+ "The current product nane is &product; ."

+ "</ p>"

)

“PushButton(opt(default), "&XK")
)

UI::UserInp)ué();
) Ul ::Cl oseD al og();

486

Name

LogView -- scrollablelog lines like "tail -f*
LogView

LogVi ew (| abel, visibleLines, maxLines);
string | abel

i nteger visibleLines ;

i nt eger maxLi nes ;

Parameters

string | abel (abovetheloglines)

integer vi s- number of visible lines (without scrolling)

i bl eLi nes

integer number of log linesto store (use O for "all")

maxLi nes

Properties

string Val ue All log lines. Set this property to replace or clear the entire contents. Can only

be set, not queried.

string Last Li ne The last log line. Set this property to append one or more line(s) to the log.
Can only be set, not queried.

string Label The label above thelog text.

Description

A scrolled output-only text window where ASCII output of any kind can be redirected - very much
like a shell window with "tail -f".

The LogView will keep up to "maxLines" of output, discarding the oldest lines if there are more. If
"maxLines’ issetto 0, al lineswill be kept.

"visibleLines" lines will be visible by default (without scrolling) unless you stretch the widget in
the layout.

Use ChangeW dget(“id("log), "LastLine, "bla blurb...\n") toappend
one or several line(s) to the output. Notice the newline at the end of each line!

Use ChangeWdget("id(“log), “Value, "bla blurb...\n") toreplacethe
entire contents of the LogView.

UseChangeWdget ("id("log), "Value, "") toclear thecontents.

Usage

487

Examples

“LogView("Log file", 4, 200);

Examples

{
string partl =
"They sought it with thinmbles, they sought it with care;\n" +
"They pursued it with forks and hope;\n" +

"They threatened its life with a railway-share;\n" +
";I'hey charmed it with smles and soap. \n" +
"\t

string part2 =
"Then the Butcher contrived an ingeni ous plan\n" +
"For making a separate sally;\n" +
"And fixed on a spot unfrequented by man,\n" +
"(’\ di smal and desol ate valley. \n" +
“\n

string part3 =
"But the very sane plan to the Beaver occurred:\n" +
"It had chosen the very sanme place:\n" +
"Yet neither betrayed, by a sign or a word,\n" +
"The di sgust that appeared in his face. \n" +

"\'n";

string part4 =
"Each thought he was thinking of nothing but \"Snark\"\n" +

"And the glorious work of the day;\n" +
"And each tried to pretend that he did not remark\n" +
";I'hat the ot her was going that way. \n" +
“\ "

string part5 =
"But the valley grew narrow and narrower still,\n" +
"And the evening got darker and col der,\n" +
"Till (merely from nervousness, not from goodwll)\n" +
"They marched al ong shoul der to shoul der. \n" +
"\'n";

string part6 =
"Then a scream shrill and high, rent the shuddering sky,\n" +
"And they knew that some danger was near:\n" +
"The Beaver turned pale to the tip of its tail,\n" +
"(And even the Butcher felt queer. \n" +
“\n":

string part7 =
"He thought of his childhood, left far far behind--\n" +
"That blissful and innocent state--\n" +
"The sound so exactly recalled to his m nd\n" +
(—\ pencil that squeaks on a slate! \n" +
“\n*

string part8 =
"\"'Tis the voice of the Jubjub!\" he suddenly cried.\n" +
"(This man, that they used to call \"Dunce.\")\n" +
"\"As the Bell man would tell you,\" he added with pride,\n" +
"\"I have uttered that sentinment once.\n" +
“\'n";

string thats_it = "\n\n*** Press [OK] once nore to exit. ***";

Ul : : OpenDi al og(
" VBox(

“LogView "id(log),
"&Excerpt from\"The Hunting O The Snark\" by Lewis Carroll",
5, /] visible lines
10), // lines to store

“PushButton(opt(default), "&OXK")

)

)3
Ul :: ChangeWdget ("id(log), "LastLine, partl); U ::Userlnput();
Ul :: ChangeW dget (“id(l1og), "LastLine, part2); U ::Userlnput();
Ul :: ChangeW dget (“id(log), “LastLine, part3); U ::Userlnput();
Ul :: ChangeWdget (" id(log), "LastLine, part4); U::Userlnput();
Ul :: ChangeWdget (“id(log), "LastLine, part5); U ::Userlnput();
Ul :: ChangeW dget (“id(l1og), “LastLine, part6); U ::Userlnput();
Ul :: ChangeW dget (“id(log), "LastLine, part7); U ::Userlnput();
Ul :: ChangeW dget ("id(log), "LastLine, part8); U ::Userlnput();
Ul :: ChangeW dget ("id("log), “Value, thats_it); U ::Userlnput();

U ::C oseDialog();

488

Examples

Excerpt fram "The Hunting Of The Snark” by Lewis Carrall

They sought it with thimbles, they sought it with care; 2
They pursued it with forks and hope,

They threatened its life with a railvay-share;

They charmed it with smiles and soap.

L« |

489

490

Name

PushButton -- Perform action on click
PushButton, |conButton

PushButton (iconNane, |abel);
string i conNane ;

string | abel

| conButton (iconName, |abel);
string i conNane ;

string | abel ;

Parameters

stringi conName (' lconButton only)

string | abel

Options

def aul t
makes this button the dial ogs default button

Properties

string Label the text on the PushButton

Description

A PushBut t on is a button with a text label the user can press in order to activate some action. If
you call User | nput () and the user presses the button, User | nput () returns with the id of the
pressed button.

You can (and should) provide keybord shortcuts along with the button label. For example "& amp;
Apply" as a button label will allow the user to activate the button with Alt-A, even if it currently
doesn't have keyboard focus. Thisisimportant for Uls that don't support using a mouse.

Anl conBut t on is pretty much the same, but it has an icon in addition to the text. If the Ul cannot
handle icons, it displays only the text, and the icon is silently omitted.

Ilcons are (a the time of this writing) loaded from the theme directory,
<filename>/usr/share/Y aST 2/theme/cur